Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band

被引:89
|
作者
Martner, Brooks E. [1 ,2 ]
Yuter, Sandra E. [3 ]
White, Allen B. [1 ,2 ]
Matrosov, Sergey Y. [1 ,2 ]
Kingsmill, David E. [1 ,2 ]
Ralph, F. Martin [1 ]
机构
[1] NOAA, ESRL, PSD 2, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
关键词
D O I
10.1175/2007JHM924.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Recent studies using vertically pointing S-band profiling radars showed that coastal winter storms in California and Oregon frequently do not display a melting-layer radar bright band and inferred that these nonbrightband (NBB) periods are characterized by raindrop size spectra that differ markedly from those of brightband (BB) periods. Two coastal sites in northern California were revisited in the winter of 2003/04 in this study, which extends the earlier work by augmenting the profiling radar observations with collocated raindrop disdrometers to measure drop size distributions (DSD) at the surface. The disdrometer observations are analyzed for more than 320 h of nonconvective rainfall. The new measurements confirm the earlier inferences that NBB rainfall periods are characterized by greater concentrations of small drops and smaller concentrations of large drops than BB periods. Compared with their BB counterparts, NBB periods had mean values that were 40% smaller for mean-volume diameter, 32% smaller for rain intensity, 87% larger for total drop concentration, and 81% larger (steeper) for slope of the exponential DSDs. The differences are statistically significant. Liquid water contents differ very little, however, for the two rain types. Disdrometer-based relations between radar reflectivity (Z) and rainfall intensity (R) at the site in the Coast Range Mountains were Z = 168R(1.58) for BB periods and Z = 44R(1.91) for NBB. The much lower coefficient, which is characteristic of NBB rainfall, is poorly represented by the Z-R equations most commonly applied to data from the operational network of Weather Surveillance Radar-1988 Doppler (WSR-88D) units, which underestimate rain accumulations by a factor of 2 or more when applied to nonconvective NBB situations. Based on the observed DSDs, it is also concluded that polarimetric scanning radars may have some limited ability to distinguish between regions of BB and NBB rainfall using differential reflectivity. However, differential-phase estimations of rain intensity are not useful for NBB rain, because the drops are too small and nearly spherical. On average, the profiler-measured echo tops were 3.2 km lower in NBB periods than during BB periods, and they extended only about 1 km above the 0 degrees C altitude. The findings are consistent with the concept that precipitation processes during BB periods are dominated by ice processes in deep cloud layers associated with synoptic-scale forcing, whereas the more restrained growth of hydrometeors in NBB periods is primarily the result of orographically forced condensation and coalescence processes in much shallower clouds.
引用
收藏
页码:408 / 425
页数:18
相关论文
共 33 条
  • [31] Seasonal Characteristics of Disdrometer-Observed Raindrop Size Distributions and Their Applications on Radar Calibration and Erosion Mechanism in a Semi-Arid Area of China
    Xie, Zongxu
    Yang, Hanbo
    Lv, Huafang
    Hu, Qingfang
    REMOTE SENSING, 2020, 12 (02)
  • [32] Raindrop Size Distributions in the Zhengzhou Extreme Rainfall Event on 20 July 2021: Temporal-Spatial Variability and Implications for Radar QPE (vol 38, pg 489, 2024)
    Cui, Liman
    Li, Haoran
    Su, Aifang
    Zhang, Yang
    Lyu, Xiaona
    Xi, Le
    Zhang, Yuanmeng
    JOURNAL OF METEOROLOGICAL RESEARCH, 2024, 38 (06) : 1184 - 1184
  • [33] Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar
    Chang, Wei-Yu
    Wang, Tai-Chi Chen
    Lin, Pay-Liam
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (10) : 1973 - 1993