On convex functions of higher order

被引:0
|
作者
Gilanyi, Attila [1 ]
Pales, Zsolt [1 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on J. L. W. V Jensen's concept of convex functions as well on its generalization by E. M. Wright and related to T. Popoviciu's convexity notions, higher-order convexity properties of real functions are introduced and surveyed.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
  • [41] POPOVICIU TYPE CHARACTERIZATION OF POSITIVITY OF SUMS AND INTEGRALS FOR CONVEX FUNCTIONS OF HIGHER ORDER
    Khan, Asif R.
    Pecaric, Josip
    Varosanec, Sanja
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 195 - 212
  • [42] SUBORDINATION FOR CONVEX FUNCTIONS OF ORDER A
    MACGREGOR, TH
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 9 (36): : 530 - 536
  • [43] ON STARLIKE AND CONVEX FUNCTIONS OF ORDER
    PINCHUK, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1968, 35 (04) : 721 - &
  • [44] Notes on Convex Functions of Order α
    Sugawa, Toshiyuki
    Wang, Li-Mei
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (01) : 79 - 92
  • [45] CONVEX FUNCTIONS OF NEGATIVE ORDER
    REDDING, RW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A362 - A362
  • [46] Higher-order smoothing technique for polyhedral convex functions: geometric and probabilistic considerations
    Guillaume, S
    Seeger, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 771 - 774
  • [47] Hermite-Hadamard type inequalities for higher-order convex functions and applications
    Van, Doan Thi Thuy
    Vu, Tran Minh
    Huy, Duong Quoc
    [J]. JOURNAL OF ANALYSIS, 2024, 32 (02): : 869 - 888
  • [48] Levinson type inequalities for higher order convex functions via Abel–Gontscharoff interpolation
    Muhammad Adeel
    Khuram Ali Khan
    Ðilda Pečarić
    Josip Pečarić
    [J]. Advances in Difference Equations, 2019
  • [49] Some new integral inequalities for higher-order strongly exponentially convex functions
    Jaya Bisht
    Nidhi Sharma
    Shashi Kant Mishra
    Abdelouahed Hamdi
    [J]. Journal of Inequalities and Applications, 2023
  • [50] A generalization of Bohr-Mollerup's theorem for higher order convex functions: a tutorial
    Marichal, Jean-Luc
    Zenaidi, Naim
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (02) : 455 - 481