The Neumann eigenvalue problem for the ∞-Laplacian

被引:15
|
作者
Esposito, L. [1 ]
Kawohl, B. [2 ]
Nitsch, C. [3 ]
Trombetti, C. [3 ]
机构
[1] Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] Univ Cologne, Inst Math, D-50923 Cologne, Germany
[3] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
Neumann eigenvalues; viscosity solutions; infinity Laplacian; POINCARE INEQUALITIES;
D O I
10.4171/RLM/697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first nontrivial eigenfunction of the Neumann eigenvalue problem for the p-Laplacian, suitably normalized, converges to a viscosity solution of an eigenvalue problem for the infinity-Laplacian as p -> infinity. We show among other things that the limiting eigenvalue, at least for convex sets, is in fact the first nonzero eigenvalue of the limiting problem. We then derive a number of consequences, which are nonlinear analogues of well-known inequalities for the linear (2-)Laplacian.
引用
收藏
页码:119 / 134
页数:16
相关论文
共 50 条