Koopmans Spectral Functionals in Periodic Boundary Conditions

被引:11
|
作者
Colonna, Nicola [1 ,4 ]
De Gennaro, Riccardo [1 ,2 ]
Linscott, Edward [1 ,2 ]
Marzari, Nicola [1 ,2 ,3 ]
机构
[1] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MAR, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
[3] Paul Scherrer Inst, Lab Mat Simulat, CH-5232 Villigen, Switzerland
[4] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会;
关键词
SELF-INTERACTION CORRECTION; GREENS-FUNCTION; AB-INITIO; ELECTRONIC-STRUCTURE; ORBITAL ENERGIES; HARTREE-FOCK; DENSITY; EXCHANGE; STATES; CHARGE;
D O I
10.1021/acs.jctc.2c00161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Koopmans spectral functionals aim to describe simultaneously ground-state properties and charged excitations of atoms, molecules, nanostructures, and periodic crystals. This is achieved by augmenting standard density functionals with simple but physically motivated orbital-density-dependent corrections. These corrections act on a set of localized orbitals that, in periodic systems, resemble maximally localized Wannier functions. At variance with the original, direct supercell implementation (Phys. Rev. X 2018, 8, 021051), we discuss here (i) the complex but efficient formalism required for a periodic boundary code using explicit Brillouin zone sampling and (ii) the calculation of the screened Koopmans corrections with density functional perturbation theory. In addition to delivering improved scaling with system size, the present development makes the calculation of band structures with Koopmans functionals straightforward. The implementation in the open-source Quantum ESPRESSO distribution and the application to prototypical insulating and semiconducting systems are presented and discussed.
引用
收藏
页码:5435 / 5448
页数:14
相关论文
共 50 条
  • [21] Periodic boundary conditions on the pseudosphere
    Sausset, F.
    Tarjus, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 12873 - 12899
  • [22] Mixed Spectral-Element Method for the Waveguide Problem With Bloch Periodic Boundary Conditions
    Liu, Jie
    Jiang, Wei
    Liu, Na
    Liu, Qing Huo
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (05) : 1568 - 1577
  • [23] An Explanation of Metastability in the Viscous Burgers Equation with Periodic Boundary Conditions via a Spectral Analysis
    McQuighan, Kelly
    Wayne, C. Eugene
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04): : 1916 - 1961
  • [24] ON NONLINEAR BOUNDARY CONDITIONS INVOLVING DECOMPOSABLE LINEAR FUNCTIONALS
    Goodrich, Christopher S.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) : 421 - 439
  • [25] Periodic sedimentation of three particles in periodic boundary conditions
    Ekiel-Jezewska, ML
    Felderhof, BU
    [J]. PHYSICS OF FLUIDS, 2005, 17 (09) : 1 - 9
  • [26] Electronic Structure of Water from Koopmans-Compliant Functionals
    de Almeida, James Moraes
    Nguyen, Ngoc Linh
    Colonna, Nicola
    Chen, Wei
    Miranda, Caetano Rodrigues
    Pasquarello, Alfredo
    Marzari, Nicola
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (07) : 3923 - 3930
  • [27] OPTIMAL APPROXIMATION WITH SIDE CONDITIONS TO LINEAR FUNCTIONALS ON PERIODIC FUNCTIONS
    KNAUFF, W
    KRESS, R
    [J]. NUMERISCHE MATHEMATIK, 1976, 25 (02) : 149 - 152
  • [28] Existence and uniqueness for higher order periodic boundary value problems under spectral separation conditions
    Li, Yongxiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 530 - 539
  • [29] Reproducing Kernel for Periodic Boundary Conditions
    Patel, Gautam
    Patel, Kaushal
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2023, 47 (06) : 805 - 818
  • [30] PERTURBATION OF PERIODIC BOUNDARY-CONDITIONS
    TURYN, L
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) : 648 - 655