An inversion of magnetic field effects in electromer-based organic light-emitting diodes

被引:12
|
作者
Yuan, Peisen [1 ,2 ]
Qiao, Xianfeng [3 ]
Yan, Donghang [1 ,2 ]
Ma, Dongge [1 ,3 ]
机构
[1] Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
EXCITON FORMATION RATES; CHARGE-LIMITED CURRENT; DELAYED FLUORESCENCE; TRIPLET EXCITONS; ELECTROLUMINESCENCE; EMISSION; SINGLET; FILMS; MAGNETORESISTANCE; EFFICIENCY;
D O I
10.1039/c8tc05571h
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the magneto-conductance and magneto-electroluminescence effects in 4,4-(cyclohexane-1,1-diyl)bis(N,N-di-p-tolylaniline) (TAPC)-based OLEDs. A novel property of negative magneto-conductance and magneto-electroluminescence effects is observed, and their sign changes with the applied voltage or current. It has been demonstrated that magneto-conductance is mainly caused by the magnetic field-induced electron-hole recombination process, which is dependent on the different applied voltages, leading to the inversion of magneto-conductance. The negative magneto-electroluminescence located at 580 nm (electromer) is related to the larger ratio of the singlet exciton formation rate k(S) to the triplet exciton formation rate k(T). In particular, this ratio varies with the injected current, which leads to an inversion of magneto-electroluminescence. Our results indicate that the value of the k(S)/k(T) ratio in OLEDs can be varied by the applied voltages or injected currents, finally affecting the electroluminescence performance of OLEDs.
引用
收藏
页码:1035 / 1041
页数:7
相关论文
共 50 条
  • [41] Tandem Organic Light-Emitting Diodes
    Fung, Man-Keung
    Li, Yan-Qing
    Liao, Liang-Sheng
    ADVANCED MATERIALS, 2016, 28 (47) : 10381 - 10408
  • [42] Magnetoelectroluminescence in organic light-emitting diodes
    Lawrence, Joseph E.
    Lewis, Alan M.
    Manolopoulos, David E.
    Hore, P. J.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (21):
  • [43] Models of organic light-emitting diodes
    Bassler, H
    Tak, YH
    Khramtchenkov, DV
    Nikitenko, VR
    SYNTHETIC METALS, 1997, 91 (1-3) : 173 - 179
  • [44] Nanoscale organic light-emitting diodes
    Yamamoto, H
    Wilkinson, J
    Long, JP
    Bussman, K
    Christodoulides, JA
    Kafafi, ZH
    NANO LETTERS, 2005, 5 (12) : 2485 - 2488
  • [45] Multilayer organic light-emitting diodes
    Jiang, XZ
    Liu, YQ
    Song, XQ
    Zhu, DB
    SOLID STATE COMMUNICATIONS, 1996, 99 (03) : 183 - 187
  • [46] White Organic Light-Emitting Diodes
    Gather, Malte C.
    Koehnen, Anne
    Meerholz, Klaus
    ADVANCED MATERIALS, 2011, 23 (02) : 233 - 248
  • [47] Simulation of organic light-emitting diodes
    Blades, CDJ
    Walker, AB
    SYNTHETIC METALS, 2000, 111 : 335 - 340
  • [48] Photochemistry of organic light-emitting diodes
    Ehara, Masahiro
    Nakatsuji, Hiroshi
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 306 - 310
  • [49] Electroplex in organic light-emitting diodes
    Tian, Miao-Miao
    Fan, Yi
    Gao, Jie
    Chen, Hong
    Faguang Xuebao/Chinese Journal of Luminescence, 2010, 31 (06): : 779 - 783
  • [50] Electroluminescence and Organic Light-Emitting Diodes
    Mal'tsev, E. I.
    Lypenko, D. A.
    Dmitriev, A. V.
    Vannikov, A. V.
    Burlov, A. S.
    Vlasenko, V. G.
    RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2023, 49 (SUPPL 1) : S2 - S6