Multi-Scale Interactive Network With Artery/Vein Discriminator for Retinal Vessel Classification

被引:9
|
作者
Hu, Jingfei [1 ,2 ,3 ,4 ]
Wang, Hua [1 ,2 ,3 ,4 ]
Wu, Guang [2 ]
Cao, Zhaohui [2 ]
Mou, Lei [5 ]
Zhao, Yitian [5 ]
Zhang, Jicong [1 ,2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Hefei Innovat Res Inst, Hefei 230012, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100083, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100083, Peoples R China
[5] Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
基金
北京市自然科学基金;
关键词
Arteries; Biomedical imaging; Veins; Blood vessels; Noise measurement; Retinal vessels; Annotations; Fundus images; multi-scale interactive; artery; vein classification; deep learning; ATHEROSCLEROSIS RISK; SEGMENTATION; SEPARATION; IMAGES;
D O I
10.1109/JBHI.2022.3165867
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic classification of retinal arteries and veins plays an important role in assisting clinicians to diagnosis cardiovascular and eye-related diseases. However, due to the high degree of anatomical variation across the population, and the presence of inconsistent labels by the subjective judgment of annotators in available training data, most of existing methods generally suffer from blood vessel discontinuity and arteriovenous confusion, the artery/vein (A/V) classification task still faces great challenges. In this work, we propose a multi-scale interactive network with A/V discriminator for retinal artery and vein recognition, which can reduce the arteriovenous confusion and alleviate the disturbance of noisy label. A multi-scale interaction (MI) module is designed in encoder for realizing the cross-space multi-scale features interaction of fundus images, effectively integrate high-level and low-level context information. In particular, we also design an ingenious A/V discriminator (AVD) that utilizes the independent and shared information between arteries and veins, and combine with topology loss, to further strengthen the learning ability of model to resolve the arteriovenous confusion. In addition, we adopt a sample re-weighting (SW) strategy to effectively alleviate the disturbance from data labeling errors. The proposed model is verified on three publicly available fundus image datasets (AV-DRIVE, HRF, LES-AV) and a private dataset. We achieve the accuracy of 97.47%, 96.91%, 97.79%, and 98.18% respectively on these four datasets. Extensive experimental results demonstrate that our method achieves competitive performance compared with state-of-the-art methods for A/V classification. To address the problem of training data scarcity, we publicly release 100 fundus images with A/V annotations to promote relevant research in the community.
引用
收藏
页码:3896 / 3905
页数:10
相关论文
共 50 条
  • [1] Retinal artery/vein classification by multi-channel multi-scale fusion network
    Junyan Yi
    Chouyu Chen
    Gang Yang
    [J]. Applied Intelligence, 2023, 53 : 26400 - 26417
  • [2] Retinal artery/vein classification by multi-channel multi-scale fusion network
    Yi, Junyan
    Chen, Chouyu
    Yang, Gang
    [J]. APPLIED INTELLIGENCE, 2023, 53 (22) : 26400 - 26417
  • [3] Retinal artery/vein classification based on multi-scale category fusion
    Duan, Kunyi
    Wang, Suyu
    Liu, Hongyu
    He, Jian
    [J]. 2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 1036 - 1041
  • [4] Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation
    Peipei Li
    Zhao Qiu
    Yuefu Zhan
    Huajing Chen
    Sheng Yuan
    [J]. Journal of Medical Systems, 47
  • [5] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16
  • [6] Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation
    Li, Peipei
    Qiu, Zhao
    Zhan, Yuefu
    Chen, Huajing
    Yuan, Sheng
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [7] MULTI-SCALE REGULARIZED DEEP NETWORK FOR RETINAL VESSEL SEGMENTATION
    Cherukuri, Venkateswararao
    Kumar, Vijay B. G.
    Bala, Raja
    Monga, Vishal
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 824 - 828
  • [8] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [9] RETINAL VESSEL SEGMENTATION VIA A SEMANTICS AND MULTI-SCALE AGGREGATION NETWORK
    Xu, Rui
    Ye, Xinchen
    Jiang, Guiliang
    Liu, Tiantian
    Li, Liang
    Tanaka, Satoshi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1085 - 1089
  • [10] MD-Net: A multi-scale dense network for retinal vessel segmentation
    Shi, Zhengjin
    Wang, Tianyu
    Huang, Zheng
    Xie, Feng
    Liu, Zihong
    Wang, Bolun
    Xu, Jing
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70