PALS laser-driven radiative jets for astrophysical and ICF applications

被引:0
|
作者
Pisarczyk, T. [1 ]
Kasperczuk, A. [1 ]
Stenz, Ch. [2 ]
Krousky, E. [3 ]
Masek, K. [3 ]
Pfeifer, M. [3 ]
Rohlena, K. [3 ]
Skala, J. [3 ]
Ullschmied, J. [4 ]
Kalal, M. [5 ]
Pisarczyk, P. [6 ]
机构
[1] Ins Plasma Phys & Laser Microfus, 23 Hery St, PL-00908 Warsaw, Poland
[2] Univ Bordeaux 1, CNRS CEA, Ctr Lasers Intenses & Applicat, Talence, France
[3] AS CR, Inst Phys, CH-18221 Prague 8, Czech Republic
[4] AS CR, Insti Plasma Phys, CH-18200 Prague 8, Czech Republic
[5] Czech Tech Univ, FNSPE, CH-11519 Prague 1, Czech Republic
[6] Warsaw Univ Technol, ICS, PL-00665 Warsaw, Poland
来源
PLASMA 2007 | 2008年 / 993卷
关键词
plasma jet; radiative cooling; shock wave; x-ray radiation; interferometry; electron density distribution;
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System - PALS) using the third harmonic beam (0.438 mu m) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x10(7) cm/s, the internal Mach number greater than 10 and the electron density above 10(19)cm(-3). The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm.
引用
收藏
页码:315 / +
页数:2
相关论文
共 50 条
  • [31] Handling and dosimetry of laser-driven ion beams for applications
    Milluzzo, G.
    Petringa, G.
    Catalano, R.
    Cirrone, G. A. P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (11):
  • [32] ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications
    Margarone, Daniele
    Cirrone, G. A. Pablo
    Cuttone, Giacomo
    Amico, Antonio
    Ando, Lucio
    Borghesi, Marco
    Bulanov, Stepan S.
    Bulanov, Sergei V.
    Chatain, Denis
    Fajstavr, Antonin
    Giuffrida, Lorenzo
    Grepl, Filip
    Kar, Satyabrata
    Krasa, Josef
    Kramer, Daniel
    Larosa, Giuseppina
    Leanza, Renata
    Levato, Tadzio
    Maggiore, Mario
    Manti, Lorenzo
    Milluzzo, Guliana
    Odlozilik, Boris
    Olsovcova, Veronika
    Perin, Jean-Paul
    Pipek, Jan
    Psikal, Jan
    Petringa, Giada
    Ridky, Jan
    Romano, Francesco
    Rus, Bedrich
    Russo, Antonio
    Schillaci, Francesco
    Scuderi, Valentina
    Velyhan, Andriy
    Versaci, Roberto
    Wiste, Tuomas
    Zakova, Martina
    Korn, Georg
    QUANTUM BEAM SCIENCE, 2018, 2 (02)
  • [33] Laser-driven proton acceleration and applications: Recent results
    M. Borghesi
    T. Toncian
    J. Fuchs
    C. A. Cecchetti
    L. Romagnani
    S. Kar
    K. Quinn
    B. Ramakrishna
    P. A. Wilson
    P. Antici
    P. Audebert
    E. Brambrink
    A. Pipahl
    R. Jung
    M. Amin
    O. Willi
    R. J. Clarke
    M. Notley
    P. Mora
    T. Grismayer
    E. D’Humières
    Y. Sentoku
    The European Physical Journal Special Topics, 2009, 175 : 105 - 110
  • [34] A laser-driven droplet source for plasma physics applications
    Aurand, Bastian
    Aktan, Esin
    Schwind, Kerstin Maria
    Prasad, Rajendra
    Cerchez, Mirela
    Toncian, Toma
    Willi, Oswald
    LASER AND PARTICLE BEAMS, 2020, 38 (04) : 214 - 221
  • [35] Development of a laser-driven plasma cathode for medical applications
    Kinoshita, K.
    Hosokai, T.
    Ohkubo, T.
    Maekawa, A.
    Zhidkov, A.
    Uesaka, M.
    LASER PHYSICS, 2006, 16 (04) : 660 - 665
  • [36] Handling and dosimetry of laser-driven ion beams for applications
    G. Milluzzo
    G. Petringa
    R. Catalano
    G. A. P. Cirrone
    The European Physical Journal Plus, 136
  • [37] Laser-driven particle and photon beams and some applications
    Ledingham, K. W. D.
    Galster, W.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [38] Laser-Driven Plasma-Based Incoherent X-Ray Sources at PALS and ELI Beamlines
    Kozlova, M.
    Bohacek, K.
    Horny, V.
    Phuoc, K. Ta
    Nejdl, J.
    Sebban, S.
    Gautier, J.
    Krus, M.
    Chaulagain, U.
    X-RAY LASERS 2016, 2018, 202 : 127 - 134
  • [39] Zeus-2D simulations of laser-driven radiative shock experiments
    Leibrandt, DR
    Drake, RP
    Stone, JM
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 298 (1-2) : 273 - 276
  • [40] Radiative dynamics of laser-driven Li@Cn embedded in quantum plasma
    Bahar, Mustafa Kemal
    PHYSICA SCRIPTA, 2024, 99 (03)