Method for geostationary satellite thermal infrared data simulation from polar-orbiting MODIS sensors

被引:0
|
作者
Qian, Yonggang [1 ]
Li, Kun [1 ]
Yao, Weiyuan [1 ]
Li, Wan [1 ]
Qiu, Shi [1 ]
Ma, Lingling [1 ]
Liang, Shi [2 ]
Yao, Guanglin [3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Quantitat Remote Sensing Informat, Beijing 100094, Peoples R China
[2] PIESAT Informat Technol Co Ltd, Beijing 100195, Peoples R China
[3] 8th Inst Geol & Mineral Explorat Shandong Prov, Rizhao 276826, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
LAND-SURFACE TEMPERATURE; RADIATIVE-TRANSFER; EMISSIVITY; MODEL; TOOL; VALIDATION; SCATTERING; RESOLUTION; RETRIEVAL; ALGORITHM;
D O I
10.1364/OE.444857
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Simulation of thermal images plays an important role in the pre-evaluation of the data acquisition characteristics of sensors. This work addressed an operational method for the time-series thermal infrared (TIR) data of geostationary satellite simulated from polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS) sensors based on Radiative Transfer Model (RTM) under cloud-free conditions. The data procedure, including the land surface emissivity (LSE), time-series land surface temperature (LST), time-series atmospheric parameters, sensor performance, can be described as follows. Firstly, MODIS LST product filtering rules are developed due to its data quality. Then, a Diurnal Temperature Cycle (DTC) model with four parameters is used to acquire the time-series LSTs. The spatial and spectral matching method are adopted from MODIS LST&LSE product. A temporal interpolation method is used to obtain the time-series atmospheric parameters from the atmospheric profile provided by European Centre for Medium-Range Weather Forecasts (ECMWF). Then, the time-series TIR data at sensors were modeled using this method. Compared with the time-series TOA brightness temperature of MSG/ SEVIRI geostationary satellite, the results show that the modeling accuracy is achieved with root mean square errors (RMSEs) 2.39K, 2.81K, 1.06K, and 1.29K at MODIS overpass times, and the mean and RMSE are -0.09K and 1.61K for all cloud-free pixels at the UTC time spanning from 08:00 to 05:00, which can be well reconstruct the time-series real scenes using the proposed method. (C) 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:43836 / 43851
页数:16
相关论文
共 50 条
  • [21] ESTIMATING URBAN TEMPERATURE BIAS USING POLAR-ORBITING SATELLITE DATA
    JOHNSON, GL
    DAVIS, JM
    KARL, TR
    MCNAB, AL
    GALLO, KP
    TARPLEY, JD
    BLOOMFIELD, P
    [J]. JOURNAL OF APPLIED METEOROLOGY, 1994, 33 (03): : 358 - 369
  • [22] Relative impact of polar-orbiting and geostationary satellite radiances in the Aladin/France numerical weather prediction system
    Montmerle, Thibaut
    Rabier, Florence
    Fischer, Claude
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (624) : 655 - 671
  • [23] Convergence of the civilian and the military polar-orbiting environmental satellite systems: VIIRS (The Visible/Infrared Imager/Radiometer Suite) for NPOESS (National Polar-Orbiting Operational Environmental Satellite System)
    Crison, M
    Berry, D
    DeLuccia, F
    [J]. IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 271 - 273
  • [24] SPACE AND TIME ALIASING STRUCTURE IN MONTHLY MEAN POLAR-ORBITING SATELLITE DATA
    ZENG, LX
    LEVY, G
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D3) : 5133 - 5142
  • [25] Space and time aliasing structure in monthly mean polar-orbiting satellite data
    Zeng, L.
    Levy, G.
    [J]. Giesserei, 1995, 820
  • [26] Cloud detection in sea surface temperature images by combining data from NOAA polar-orbiting and geostationary satellites
    Yang, ZZ
    Wood, G
    O'Reilly, JE
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1817 - 1820
  • [27] Quantifying burned area of wildfires in the western United States from polar-orbiting and geostationary satellite active-fire detections
    Berman, Melinda T. T.
    Ye, Xinxin
    Thapa, Laura H. H.
    Peterson, David A. A.
    Hyer, Edward J. J.
    Soja, Amber J. J.
    Gargulinski, Emily M. M.
    Csiszar, Ivan
    Schmidt, Christopher C. C.
    Saide, Pablo E. E.
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2023, 32 (05) : 665 - 678
  • [28] Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution
    Vanhellemont, Quinten
    Neukermans, Griet
    Ruddick, Kevin
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 146 : 49 - 62
  • [29] Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data
    Jia, Aolin
    Liang, Shunlin
    Wang, Dongdong
    Ma, Lei
    Wang, Zhihao
    Xu, Shuo
    [J]. EARTH SYSTEM SCIENCE DATA, 2023, 15 (02) : 869 - 895
  • [30] Cloud cover and regional-scale rainfall area delineation from polar-orbiting satellite data
    Volkova, E.V.
    Uspenskij, A.B.
    [J]. Meteorologiya i Gidrologiya, 2002, (04): : 28 - 39