Network topology inference with estimated node importance

被引:2
|
作者
Hao, Xu [1 ,2 ]
Li, Xiang [1 ,2 ,3 ]
机构
[1] Fudan Univ, Adapt Networks & Control Lab, Dept Elect Engn, Shanghai 200433, Peoples R China
[2] Fudan Univ, Res Ctr Smart Networks & Syst, Sch Informat Sci & Engn, Shanghai 200433, Peoples R China
[3] Fudan Univ, MOE Frontiers Ctr Brain Sci, Inst Brain Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1209/0295-5075/134/58001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In real life, the actual topology of a network is often difficult to observe or even unobservable, which seriously limits our analysis and understanding of such networks. How to accurately infer the network structure from easily observed data is extremely urgent. In this letter, we try to improve the inference accuracy by introducing the heterogeneity of nodes during the network reconstruction, and propose a novel method to estimate the importance of nodes directly from the spreading results. The results on both synthetic and empirical data sets show that our algorithms can effectively improve the inference accuracy, especially when the observed data is insufficient. Copyright (C) 2021 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Communication Network Topology Inference via Transfer Entropy
    Sharma, Pranay
    Bucci, Donald J.
    Brahma, Swastik K.
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (01): : 562 - 575
  • [42] Network topology inference from incomplete observation data
    Peng Dou
    Guojie Song
    Tong Zhao
    Science China Information Sciences, 2018, 61
  • [43] Network topology inference by exploring underlying traffic behaviors
    Ye, Jian
    Fei, Gaolei
    Qi, Wenkai
    Zhou, Yunpeng
    Hu, Guangmin
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1705 - 1710
  • [44] Joint Network Topology Inference in the Presence of Hidden Nodes
    Navarro, Madeline
    Rey, Samuel
    Buciulea, Andrei
    Marques, Antonio G.
    Segarra, Santiago
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 2710 - 2725
  • [45] Network topology inference from incomplete observation data
    Dou, Peng
    Song, Guojie
    Zhao, Tong
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (02)
  • [46] ONLINE NETWORK TOPOLOGY INFERENCE WITH PARTIAL CONNECTIVITY INFORMATION
    Shafipour, Rasoul
    Mateos, Gonzalo
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 226 - 230
  • [47] INFERENCE OF WIRED NETWORK TOPOLOGY USING MULTIPOINT REFLECTOMETRY
    Ulrich, Michael
    Yang, Bin
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1920 - 1924
  • [48] The importance of network topology in local contribution games
    Corbo, Jacomo
    Calvo-Armengol, Antoni
    Parkes, David C.
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2007, 4858 : 388 - +
  • [49] OpenMobileNetwork: A Platform for Providing Estimated Semantic Network Topology Data
    Uzun, Abdulbaki
    Neidhardt, Eric
    Kuepper, Axel
    INTERNATIONAL JOURNAL OF BUSINESS DATA COMMUNICATIONS AND NETWORKING, 2013, 9 (04) : 46 - 64
  • [50] Inference of node attributes from social network assortativity
    Mulders, Dounia
    de Bodt, Cyril
    Bjelland, Johannes
    Pentland, Alex
    Verleysen, Michel
    de Montjoye, Yves-Alexandre
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (24): : 18023 - 18043