The 3D inversion of airborne gamma-ray spectrometric data

被引:14
|
作者
Minty, Brian [1 ]
Brodie, Ross [2 ]
机构
[1] Minty Geophys, POB 3229, Weston, ACT 2611, Australia
[2] Geosci Australia, GPO Box 378, Canberra, ACT 2601, Australia
关键词
deconvolution; gamma-ray spectrometry; inversion; terrain correction; topographic correction; RADIOMETRIC DATA; NOISE; RESOLUTION;
D O I
10.1071/EG14110
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data after the conventional processing of these data assuming a flat-earth model.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 50 条
  • [31] Performance of 3D printed plastic scintillators for gamma-ray detection
    Kim, Dong-geon
    Lee, Sangmin
    Park, Junesic
    Son, Jaebum
    Kim, Tae Hoon
    Kim, Yong Hyun
    Pak, Kihong
    Kim, Yong Kyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2020, 52 (12) : 2910 - 2917
  • [32] Terrain mobility estimation using TWI and airborne gamma-ray data
    Mattila, U.
    Tokola, T.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 232 : 531 - 536
  • [33] USING UNSUPERVISED CLUSTERING FOR ANALYZING AIRBORNE GAMMA-RAY SPECTROMETRY DATA
    Weihermann, Jessica Derkacz
    Ferreira, Matheus Pinheiro
    Fonseca Ferreira, Francisco Jose
    Silva, Adalene Moreira
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5115 - 5118
  • [34] INTERPRETATION OF AIRBORNE GAMMA-RAY SPECTROMETRY DATA FROM SUDBURY, ONTARIO
    SINGH, V
    MOON, WM
    MILLER, HG
    SO, CS
    CIM BULLETIN, 1994, 87 (977): : 31 - 35
  • [35] Enhancing the resolution of airborne gamma-ray data using horizontal gradients
    Beamish, David
    JOURNAL OF APPLIED GEOPHYSICS, 2016, 132 : 75 - 86
  • [36] 3D parallel inversion of time-domain airborne EM data
    Liu Yun-He
    Yin Chang-Chun
    Ren Xiu-Yan
    Qiu Chang-Kai
    APPLIED GEOPHYSICS, 2016, 13 (04) : 701 - 711
  • [37] 3D inversion of airborne gravity-gradiometry data using cokriging
    Geng, Meixia
    Huang, Danian
    Yang, Qingjie
    Liu, Yinping
    GEOPHYSICS, 2014, 79 (04) : G37 - G47
  • [38] 3D parallel inversion of time-domain airborne EM data
    Yun-He Liu
    Chang-Chun Yin
    Xiu-Yan Ren
    Chang-Kai Qiu
    Applied Geophysics, 2016, 13 : 701 - 711
  • [39] GAMMA-RAY SPECTROMETRIC CHARACTERIZATION OF VOLCANIC MAGMAS
    SATO, J
    SATO, K
    GEOCHEMICAL JOURNAL, 1977, 11 (04) : 261 - 266
  • [40] Gamma-Ray Spectrometric and Ultrasonic Diagnostics of Materials
    A. K. Brovtsyn
    A. N. Silant'ev
    Russian Journal of Nondestructive Testing, 2001, 37 : 519 - 524