Fractional PI Design for Time Delay Systems Based on Min-Max Optimization

被引:0
|
作者
Saidi, B. [1 ]
Amairi, M. [1 ]
Najar, S. [1 ]
Aoun, M. [1 ]
机构
[1] Univ Gabes, Natl Engn Sch Gabes, Res Unit Modeling Anal & Control Syst MACS UR 06, Gabes, Tunisia
关键词
Fractional calculus; frequency specifications; multi-objective optimization; robust controller; time delay systems; CONTROLLERS; REGIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new design method of a fractional order PI (FO-PI) for time delay systems based on the min-max numerical optimization. The proposed method uses a constrained optimization algorithm to determine the unknown parameters of the controller and has an objective to improve the transient response, stability margin, stability robustness and load disturbance rejection. A simulation example is presented to show the effectiveness of the proposed design method for a First Order Plus Dead Time system (FOPDT).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A Duality-Based Approach for Distributed Min-Max Optimization
    Notarnicola, Ivano
    Franceschelli, Mauro
    Notarstefano, Giuseppe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (06) : 2559 - 2566
  • [22] Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization
    Assavapokee, Tiravat
    Realff, Matthew J.
    Ammons, Jane C.
    Hong, I-Hsuan
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (06) : 2093 - 2102
  • [23] Min-Max Optimization over Slowly Time-Varying Graphs
    Nguyen, Nhat Trung
    Rogozin, A.
    Metelev, D.
    Gasnikov, A.
    DOKLADY MATHEMATICS, 2023, 108 (SUPPL 2) : S300 - S309
  • [24] Fractional Order PI Controller Design for Time Delay Systems
    Yuce, Ali
    Tan, Nusret
    Atherton, Derek P.
    IFAC PAPERSONLINE, 2016, 49 (10): : 94 - 99
  • [25] Global Solution of Min-Max Optimization Problems for Nonlinear Dynamic Systems
    Zhao, Yao
    Stadtherr, Mark A.
    22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 1287 - 1291
  • [26] On direct methods for lexicographic min-max optimization
    Ogryczak, Wlodzimierz
    Sliwinski, Tomasz
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 3, 2006, 3982 : 802 - 811
  • [27] DIFFUSION OPTIMISTIC LEARNING FOR MIN-MAX OPTIMIZATION
    Cai, H.
    Alghunaim, S. A.
    Sayed, A. H.
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5535 - 5539
  • [28] Diffusion Stochastic Optimization for Min-Max Problems
    Cai, Haoyuan
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 259 - 274
  • [29] Global optimization:: On pathlengths in min-max graphs
    Günzel, H
    Jongen, HT
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 17 (1-4) : 161 - 165
  • [30] MIN-MAX FORMULATION AS A STRATEGY IN SHAPE OPTIMIZATION
    ESCHENAUER, H
    KNEPPE, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T344 - T345