MULTI-LEVEL TRAJECTORY MODELING FOR VIDEO COPY DETECTION

被引:2
|
作者
Chen, Shi [1 ]
Wang, Jinqiao [1 ]
Ouyang, Yi [1 ]
Wang, Bo [1 ]
Tian, Qi [2 ]
Lu, Hanqing [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
关键词
video copy detection; trajectory-to-trajectory matching; Locality Sensitive Hashing (LSH);
D O I
10.1109/ICASSP.2010.5496165
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The main issue of video copy detection is to estimate a constant spatial-temporal transformation in object level between the original video and the copies. In this paper, we propose a multi-level trajectory modeling approach for video copy detection. It includes a rich trajectory description and a robust trajectory-to-trajectory matching to preserve and explore the trajectory characteristics in both spatial-temporal space and feature space. In summary, we will describe the trajectories in three levels: feature-level descriptor, spatial-temporal coordinates and high-level dynamic behaviors. After extracting the trajectories of videos, we apply a two-stage trajectory-to-trajectory based parametric matching technique to achieve an optimal spatial-temporal transformation between query video and the database videos. To speed up the detection process, we use Locality Sensitive Hashing (LSH) to index and query trajectories with the dynamic behavior and features. Extensive experiments on 100 hours of videos from the TRECVID 2008 demonstrate the effectiveness of our approach.
引用
收藏
页码:2378 / 2381
页数:4
相关论文
共 50 条
  • [21] Multi-dimensional multi-level modeling
    Thomas Kühne
    [J]. Software and Systems Modeling, 2022, 21 : 543 - 559
  • [22] Multi-level Gaussian mixture modeling for detection of malicious network traffic
    Chapaneri, Radhika
    Shah, Seema
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (05): : 4618 - 4638
  • [23] Multi-level Gaussian mixture modeling for detection of malicious network traffic
    Radhika Chapaneri
    Seema Shah
    [J]. The Journal of Supercomputing, 2021, 77 : 4618 - 4638
  • [24] Multi-level analysis of sports video sequences
    Han, JG
    Farin, D
    de With, PHN
    [J]. MULTIMEDIA CONTENT ANALYSIS, MANAGEMENT, AND RETRIEVAL 2006, 2006, 6073
  • [25] Multi-level semantic analysis for sports video
    Tjondronegoro, DW
    Chen, YPP
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2005, 3682 : 24 - 30
  • [26] Creating navigable multi-level video summaries
    Shipman, F
    Girgensohn, A
    Wilcox, L
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL II, PROCEEDINGS, 2003, : 753 - 756
  • [27] A multi-level framework for video shot structuring
    Zhai, Y
    Shah, M
    [J]. IMAGE ANALYSIS AND RECOGNITION, 2005, 3656 : 167 - 173
  • [28] Multi-Level Spatiotemporal Network for Video Summarization
    Yao, Ming
    Bai, Yu
    Du, Wei
    Zhang, Xuejun
    Quan, Heng
    Cai, Fuli
    Kang, Hongwei
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
  • [29] Multi-level Iris Video Image Thresholding
    Du, Yingzi
    Thomas, N. Luke
    Arslanturk, Emrah
    [J]. CIB: 2009 IEEE WORKSHOP ON COMPUTATIONAL INTELLIGENCE IN BIOMETRICS: THEORY, ALGORITHMS, AND APPLICATIONS, 2009, : 38 - 45
  • [30] Modeling electromigration in multi-level interconnects
    Chidambarrao, D
    Pelella, MM
    [J]. STRESS-INDUCED PHENOMENA IN METALLIZATION - THIRD INTERNATIONAL WORKSHOP, 1996, (373): : 98 - 113