Goodness-of-fit tests for the Cauchy distribution

被引:5
|
作者
Onen, BH [1 ]
Dietz, DC [1 ]
Yen, VC [1 ]
Moore, AH [1 ]
机构
[1] USAF, Inst Technol, AFIT EN, Wright Patterson AFB, OH 45433 USA
关键词
Cauchy distribution; goodness-of-fit; Monte Carlo; Kolmogorov-Smirnov test; Kuiper test;
D O I
10.1007/s001800100053
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents several modified goodness-of-fit tests for the Cauchy distribution with unknown location and scale parameters. Monte Carlo studies are performed to calculate critical values for several tests based on the empirical distribution function. Power studies suggest that the modified Kuiper (V) test is the most powerful standard test against most alternate distributions over a full range of sample sizes. A reflection technique is also employed which yields substantial improvement in the power of this test against symmetric distributions.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [31] Distribution free goodness-of-fit tests for linear processes
    Delgado, MA
    Hidalgo, J
    Velasco, C
    ANNALS OF STATISTICS, 2005, 33 (06): : 2568 - 2609
  • [32] TESTS FOR A GOODNESS-OF-FIT WITH RANDOM CELLS FOR CONDITIONAL DISTRIBUTION
    KWEI, L
    BIOMETRICS, 1983, 39 (04) : 1118 - 1118
  • [33] Powerful goodness-of-fit tests for the extreme value distribution
    Fard, Mir Nabi Pirouzi
    Holmquist, Bjorn
    CHILEAN JOURNAL OF STATISTICS, 2013, 4 (01): : 55 - 67
  • [34] Recent and classical goodness-of-fit tests for the Poisson distribution
    Gürtler, N
    Henze, N
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 90 (02) : 207 - 225
  • [35] Goodness-of-fit tests for the error distribution in nonparametric regression
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (08) : 1942 - 1951
  • [36] A Comparative Study of Goodness-of-Fit Tests for the Laplace Distribution
    Batsidis, Apostolos
    Economou, Polychronis
    Bar-Lev, Shaul K.
    AUSTRIAN JOURNAL OF STATISTICS, 2022, 51 (02) : 91 - 123
  • [37] Modified goodness-of-fit tests for the inverse Gaussian distribution
    Gunes, H
    Dietz, DC
    Auclair, PF
    Moore, AH
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (01) : 63 - 77
  • [38] Goodness-of-Fit Tests Based on a Characterization of Logistic Distribution
    Nikitin, Ya. Yu.
    Ragozin, I. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2019, 52 (02) : 169 - 177
  • [39] Goodness-of-fit tests for uniformity of probability distribution law
    Lemeshko B.Y.
    Blinov P.Y.
    Lemeshko S.B.
    Optoelectronics, Instrumentation and Data Processing, 2016, 52 (02) : 128 - 140
  • [40] Some New Goodness-of-fit Tests for Rayleigh Distribution
    Jahanshahi, S. M. A.
    Habibirad, A.
    Fakoor, V
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (02) : 305 - 315