Regularization of B-spline objects

被引:5
|
作者
Xu, Guoliang [1 ]
Bajaj, Chandrajit [2 ,3 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Spline objects; Regularization; L(2)-gradient flow; Finite element method; SPHERE;
D O I
10.1016/j.cagd.2010.09.008
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
By a d-dimensional B-spline object (denoted as O(d)), we mean a B-spline curve (d = 1), a B-spline surface (d = 2) or a B-spline volume (d = 3). By regularization of a B-spline object O(d) we mean the process of relocating the control points of O(d) such that it approximates an isometric map of its definition domain in certain directions and is shape preserving. In this paper we develop an efficient regularization method for O(d), d = 1,2,3, based on solving weak form L(2)-gradient flows constructed from the minimization of certain regularizing energy functionals. These flows are integrated via the finite element method using B-spline basis functions. Our experimental results demonstrate that our new regularization methods are very effective. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 50 条
  • [41] The redefinition of B-spline curve
    Hyung Bae Jung
    Kwangsoo Kim
    [J]. The International Journal of Advanced Manufacturing Technology, 2011, 57 : 265 - 270
  • [42] Successive Projection with B-spline
    Ueda, Yuki
    Saito, Norikazu
    [J]. INFORMATION TECHNOLOGY: NEW GENERATIONS, 2016, 448 : 917 - 928
  • [43] Monotone B-spline smoothing
    He, XM
    Shi, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) : 643 - 650
  • [44] ON A BIVARIATE B-SPLINE BASIS
    CHUI, CK
    WANG, RH
    [J]. SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1984, 27 (11): : 1129 - 1142
  • [45] B-SPLINE FIR FILTERS
    PANG, D
    FERRARI, LA
    SANKAR, PV
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1994, 13 (01) : 31 - 64
  • [46] B-spline techniques for electromagnetics
    Apaydin, G.
    Ari, N.
    [J]. MMET 2006: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, 2006, : 338 - +
  • [47] ON A BIVARIATE B-SPLINE BASIS
    崔锦泰
    王仁宏
    [J]. Science in China,SerA., 1984, Ser.A.1984 (11) : 1129 - 1142
  • [48] On Intersections of B-Spline Curves
    Yu, Ying-Ying
    Li, Xin
    Ji, Ye
    [J]. MATHEMATICS, 2024, 12 (09)
  • [49] Energy and B-spline interproximation
    Wang, Xuefu
    Cheng, Fuhua
    Barsky, Brian A.
    [J]. CAD Computer Aided Design, 1997, 29 (07): : 485 - 496
  • [50] The B-spline interpolation in visualization
    Mihajlović, Željka
    Goluban, Alan
    [J]. Journal of Computing and Information Technology, 1999, 7 (03): : 245 - 253