A Galerkin Time quadrature element formulation for linear structural dynamics

被引:5
|
作者
Qin, Junning [1 ]
Zhong, Hongzhi [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
关键词
Weak form quadrature element; Radau quadrature; Generalized differential quadrature analog; Numerical dissipation; INTEGRATION METHOD; FRAMEWORK;
D O I
10.1016/j.amc.2021.126609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A well-posed time weak form for linear structural dynamics is used to construct a Galerkin time quadrature element formulation. Radau quadrature rule and the generalized differential quadrature analog are used to turn the well-posed weak form into a set of linear equations. The stability and accuracy properties of the formulation are discussed. Numerical examples are given to show the high computational efficiency of the well-posed weak form time quadrature element formulation, as compared with a time finite element solution based on the same weak form using third-order Hermite interpolations. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Hybrid proper orthogonal decomposition formulation for linear structural dynamics
    Placzek, A.
    Tran, D. -M.
    Ohayon, R.
    JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) : 943 - 964
  • [22] Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation
    Chappell, David J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (02) : 640 - 666
  • [23] A time finite element method for structural dynamics
    Wang, Li
    Zhong, Hongzhi
    APPLIED MATHEMATICAL MODELLING, 2017, 41 : 445 - 461
  • [24] A Newmark space-time formulation in structural dynamics
    Franz Bamer
    Nima Shirafkan
    Xiaodan Cao
    Abdelbacet Oueslati
    Marcus Stoffel
    Géry de Saxcé
    Bernd Markert
    Computational Mechanics, 2021, 67 : 1331 - 1348
  • [25] A Newmark space-time formulation in structural dynamics
    Bamer, Franz
    Shirafkan, Nima
    Cao, Xiaodan
    Oueslati, Abdelbacet
    Stoffel, Marcus
    de Saxce, Gery
    Markert, Bernd
    COMPUTATIONAL MECHANICS, 2021, 67 (05) : 1331 - 1348
  • [26] An improved predictor/multi-corrector algorithm for a time-discontinuous Galerkin finite element method in structural dynamics
    C.-C. Chien
    T.-Y. Wu
    Computational Mechanics, 2000, 25 : 430 - 437
  • [27] An improved predictor/multi-corrector algorithm for a time-discontinuous Galerkin finite element method in structural dynamics
    Chien, CC
    Wu, TY
    COMPUTATIONAL MECHANICS, 2000, 25 (05) : 430 - 437
  • [28] A Galerkin boundary element formulation with dual reciprocity for elastodynamics
    Pérez-Gavilán, JJ
    Aliabadi, MH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (09) : 1331 - 1344
  • [29] GALERKIN BOUNDARY ELEMENT FORMULATION WITH MOVING SINGULARITIES.
    Han, P.S.
    Olson, M.D.
    Johnston, R.L.
    Engineering computations, 1984, 1 (03) : 232 - 236
  • [30] Structural dynamic analysis by a time-discontinuous Galerkin finite element method
    Chalmers Univ of Technology, Goteborg, Sweden
    Int J Numer Methods Eng, 12 (2131-2152):