A mathematical model for fungal development in heterogeneous environments

被引:16
|
作者
Davidson, FA [1 ]
Park, AW
机构
[1] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[2] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England
基金
英国工程与自然科学研究理事会;
关键词
fungal mycelia; heterogeneous environments;
D O I
10.1016/S0893-9659(98)00102-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical model for the development of fungal mycelia in heterogeneous environmental conditions is presented. The validity of this model is tested by comparison of numerical simulations with experimental observations. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [21] A novel mathematical model of heterogeneous cell proliferation
    Sean T. Vittadello
    Scott W. McCue
    Gency Gunasingh
    Nikolas K. Haass
    Matthew J. Simpson
    Journal of Mathematical Biology, 2021, 82
  • [22] A mathematical model of drug resistance: Heterogeneous tumors
    Panetta, JC
    MATHEMATICAL BIOSCIENCES, 1998, 147 (01) : 41 - 61
  • [23] Mathematical model of a heterogeneous pulmonary acinus structure
    Koshiyama, Kenichiro
    Wada, Shigeo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 62 : 25 - 32
  • [24] The mathematical model of wetting angle of heterogeneous nucleation
    Cheng Huang
    Bo Song
    Jinghong Mao
    Pei Zhao
    Science in China Series E: Technological Sciences, 2004, 47 : 391 - 397
  • [25] Schistosomiasis mathematical model in a spatially heterogeneous environment
    Nkuimeni, Franck Eric Thepi
    Tsanou, Berge
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [26] Mathematical sediment transport model of heterogeneous tailings
    Cavalcante, André
    Farias, Márcio
    Assis, André
    Journal of Environmental Systems, 2005, 32 (02): : 173 - 193
  • [27] Analysis of a mathematical model of immune response to fungal infection
    Friedman, Avner
    Lam, King-Yeung
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 83 (01)
  • [28] Analysis of a mathematical model of immune response to fungal infection
    Avner Friedman
    King-Yeung Lam
    Journal of Mathematical Biology, 2021, 83
  • [29] Detailed visualisation of hyphal distribution in fungal mycelia growing in heterogeneous nutritional environments
    Ritz, K
    Millar, SM
    Crawford, JW
    JOURNAL OF MICROBIOLOGICAL METHODS, 1996, 25 (01) : 23 - 28
  • [30] A spatial SIS model in advective heterogeneous environments
    Cui, Renhao
    Lou, Yuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3305 - 3343