Highly diverse fibrinogen-related proteins in the Pacific oyster Crassostrea gigas

被引:32
|
作者
Huang, Baoyu [1 ,2 ]
Zhang, Linlin [1 ]
Li, Li [1 ]
Tang, Xueying [1 ,2 ]
Zhang, Guofan [1 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Natl & Local Joint Engn Lab Ecol Mariculture, Qingdao 266071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Crassostrea gigas; FREP; Innate immune; Genome expansion; Sequence diversity; INNATE IMMUNITY; GROWTH-FACTOR; RECOGNITION; DOMAINS; FICOLINS; ACTIVATION; EXPRESSION; BACTERIA; REVEALS; LECTINS;
D O I
10.1016/j.fsi.2015.01.021
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Fibrinogen-related proteins (FREPs) are a family of proteins with high sequence diversity, and they play crucial roles in invertebrate immune response. However, few studies have characterized this diversity at the whole-genome level. In the present study, approximately 190 predicted FREPs with more than 200 fibrinogen-like (FBG) domains were identified in the genome of the Pacific oyster (Crassostrea gigas), suggesting a historical expansion of this protein family. A sequence analysis showed high numbers of polymorphisms in C. gigas FREP (CgFREP) genes, which may contribute to the versatile immune function of FREPs. A phylogenetic analysis of molluscan FREP sequences indicated lineage-specific duplication of these genes in C. gigas. Additionally, several CgFREP mRNAs were highly expressed in the gills, digestive glands, and hemocytes. Taken together, these findings will help elucidate FREP immune function and facilitate studies of the functional validation of this gene family. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:485 / 490
页数:6
相关论文
共 50 条
  • [21] Mapping heterosis QTL in the Pacific oyster Crassostrea gigas
    Hedgecock, D.
    Perry, G. M. L.
    Voigt, M. L.
    AQUACULTURE, 2007, 272 : S267 - S268
  • [22] Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas
    Song, Kai
    Wen, Shiyong
    Zhang, Guofan
    MARINE BIOTECHNOLOGY, 2019, 21 (05) : 614 - 622
  • [23] Ecophysiology of the Olympia Oyster, Ostrea lurida, and Pacific Oyster, Crassostrea gigas
    Matthew W. Gray
    Chris J. Langdon
    Estuaries and Coasts, 2018, 41 : 521 - 535
  • [24] Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia
    Sussarellu, Rossana
    Fabioux, Caroline
    Le Moullac, Gilles
    Fleury, Elodie
    Moraga, Dario
    MARINE GENOMICS, 2010, 3 (3-4) : 133 - 143
  • [25] PROCESS OF WOUND HEALING IN PACIFIC OYSTER CRASSOSTREA GIGAS
    DESVOIGNE, DM
    SPARKS, AK
    JOURNAL OF INVERTEBRATE PATHOLOGY, 1968, 12 (01) : 53 - +
  • [26] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (06) : 1453 - 1458
  • [27] Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas
    Kai Song
    Shiyong Wen
    Guofan Zhang
    Marine Biotechnology, 2019, 21 : 614 - 622
  • [28] Sources of dietary cadmium to the Pacific oyster Crassostrea gigas
    Christie, J. C.
    Bendell, L. I.
    MARINE ENVIRONMENTAL RESEARCH, 2009, 68 (03) : 97 - 105
  • [29] Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas
    Hedgecock, Dennis
    Davis, Jonathan P.
    AQUACULTURE, 2007, 272 : S17 - S29
  • [30] Sterol metabolism of Pacific oyster (Crassostrea gigas) spat
    Knauer, J
    Kerr, RG
    Lindley, D
    Southgate, PC
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 119 (01): : 81 - 84