Segmentation of Intra-Retinal Layers From Optical Coherence Tomography Images Using an Active Contour Approach

被引:125
|
作者
Yazdanpanah, Azadeh [1 ]
Hamarneh, Ghassan [2 ]
Smith, Benjamin R. [2 ]
Sarunic, Marinko V. [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Sch Comp Sci, Med Image Anal Lab, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Active contours; energy minimization; image segmentation; level sets; optical coherence tomography (OCT); retinal layers; OXYGEN-SATURATION; RODENT RETINA; LEVEL; SPECKLE;
D O I
10.1109/TMI.2010.2087390
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optical coherence tomography (OCT) is a non-invasive, depth-resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present a semi-automated segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for the OCT images, which suffer from low contrast and are highly corrupted by noise. A multiphase framework with a circular shape prior is adopted in order to model the boundaries of retinal layers and estimate the shape parameters using least squares. We use a contextual scheme to balance the weight of different terms in the energy functional. The results from various synthetic experiments and segmentation results on OCT images of rats are presented, demonstrating the strength of our method to detect the desired retinal layers with sufficient accuracy even in the presence of intensity inhomogeneity resulting from blood vessels. Our algorithm achieved an average Dice similarity coefficient of 0.84 over all segmented retinal layers, and of 0.94 for the combined nerve fiber layer, ganglion cell layer, and inner plexiform layer which are the critical layers for glaucomatous degeneration.
引用
收藏
页码:484 / 496
页数:13
相关论文
共 50 条
  • [41] Automatic Segmentation of Diffuse Retinal Thickening Edemas Using Optical Coherence Tomography Images
    Samagaio, Gabriela
    de Moura, Joaquim
    Novo, Jorge
    Ortega, Marcos
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 472 - 481
  • [42] Fast detection and segmentation of drusen in retinal optical coherence tomography images
    Farsiu, Sina
    Chiu, Stephanie J.
    Izatt, Joseph A.
    Toth, Cynthia A.
    [J]. OPHTHALMIC TECHNOLOGIES XVIII, 2008, 6844
  • [43] An Image Processing Pipeline for Segmenting the Retinal Layers from Optical Coherence Tomography Images
    Shalbaf, Farzaneh
    Turuwhenua, Jason
    Vaghefi, Ehsan
    Dokos, Socrates
    [J]. PROCEEDINGS OF 2013 28TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ 2013), 2013, : 70 - 75
  • [44] Automated 3-D segmentation of retinal layers from optical coherence tomography images using pattern recognition-based method
    Helmy, Omar
    ElTanboly, Ahmed
    Soliman, Ahmed
    Sleman, Ahmed
    Sandhu, Harpal
    El-Baz, Ayman
    Schaal, Shlomit
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [45] Automated glaucoma detection using retinal layers segmentation and optic cup-to-disc ratio in optical coherence tomography images
    Ramzan, Aneeqa
    Akram, Muhammad Usman
    Shaukat, Arslan
    Khawaja, Sajid Gul
    Yasin, Ubaid Ullah
    Butt, Wasi Haider
    [J]. IET IMAGE PROCESSING, 2019, 13 (03) : 409 - 420
  • [46] Sub-Segmentation of Retinal Layers in Patients with Foveal Hypoplasia Using Optical Coherence Tomography
    Menke, M. N.
    Abegg, M.
    Dufour, P.
    Kowal, J.
    Wolf, S.
    [J]. OPHTHALMOLOGICA, 2013, 230 : 12 - 13
  • [47] Automated retinal boundary segmentation of optical coherence tomography images using an improved Canny operator
    Liu, Jian
    Yan, Shixin
    Lu, Nan
    Yang, Dongni
    Lv, Hongyu
    Wang, Shuanglian
    Zhu, Xin
    Zhao, Yuqian
    Wang, Yi
    Ma, Zhenhe
    Yu, Yao
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] Automated retinal boundary segmentation of optical coherence tomography images using an improved Canny operator
    Jian Liu
    Shixin Yan
    Nan Lu
    Dongni Yang
    Hongyu Lv
    Shuanglian Wang
    Xin Zhu
    Yuqian Zhao
    Yi Wang
    Zhenhe Ma
    Yao Yu
    [J]. Scientific Reports, 12
  • [49] Segmentation of Retinal Low-Cost Optical Coherence Tomography Images using Deep Learning
    Kepp, Timo
    Sudkamp, Helge
    von der Burchard, Claus
    Schenke, Hendrik
    Koch, Peter
    Huettmann, Gereon
    Roider, Johann
    Heinrich, Mattias P.
    Handels, Heinz
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [50] User-guided segmentation for volumetric retinal optical coherence tomography images
    Yin, Xin
    Chao, Jennifer R.
    Wang, Ruikang K.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (08)