Universal Lossless Compression-based Denoising

被引:0
|
作者
Su, Han-I [1 ]
Weissman, Tsachy [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
SCHEMES;
D O I
10.1109/ISIT.2010.5513338
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a discrete denoising problem, if the denoiser knows the clean source distribution, the Bayes optimal denoiser is the Bayes response of the posterior distribution of the source given the noisy observations. However, in many applications the source distribution is unknown. We consider the Bayes response based on the approximate posterior distribution induced by a universal lossless compression code. Motivated by this approach, we present the empirical conditional entropy-based denoiser. Simulations show that when the source alphabet is small, the proposed denoiser achieves the performance of the Universal Discrete DEnoiser ( DUDE). Furthermore, if the alphabet size increases, the proposed denoiser degrades more gracefully than the DUDE.
引用
收藏
页码:1648 / 1652
页数:5
相关论文
共 50 条
  • [31] Compression-Based Arabic Text Classification
    Ta'amneh, Haneen
    Abu Keshek, Ehsan
    Issa, Manar Bani
    Al-Ayyoub, Mahmoud
    Jararweh, Yaser
    [J]. 2014 IEEE/ACS 11TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2014, : 594 - 600
  • [32] Compression-based similarity in EEG signals
    Prilepok, Michal
    Platos, Jan
    Snasel, Vaclav
    Jahan, Ibrahim Salem
    [J]. 2013 13TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2013, : 247 - 252
  • [33] Compression-based pruning of decision lists
    Pfahringer, B
    [J]. MACHINE LEARNING : ECML-97, 1997, 1224 : 199 - 212
  • [34] A LEARNING ALGORITHM WITH COMPRESSION-BASED REGULARIZATION
    Vera, Matias
    Rey Vega, Leonardo
    Piantanida, Pablo
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2836 - 2840
  • [35] Universal lossless compression with unknown alphabets - The average case
    Shamir, Gil I.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4915 - 4944
  • [36] Universal lossless data embedding without explicit compression
    Yokoo, H
    [J]. PROCEEDINGS OF THE IEEE ITSOC INFORMATION THEORY WORKSHOP 2005 ON CODING AND COMPLEXITY, 2005, : 268 - 272
  • [37] Universal lossless compression via multilevel pattern matching
    Kieffer, JC
    Yang, EH
    Nelson, GJ
    Cosman, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1227 - 1245
  • [38] Average case universal lossless compression with unknown alphabets
    Shamir, GI
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 27 - 27
  • [39] Compression-Based Measures for Mining Interesting Rules
    Suzuki, Einoshin
    [J]. NEXT-GENERATION APPLIED INTELLIGENCE, PROCEEDINGS, 2009, 5579 : 741 - 746
  • [40] Enhancing metagenomic classification with compression-based features
    Silva, Jorge Miguel
    Almeida, Joao Rafael
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 156