Universal Lossless Compression-based Denoising

被引:0
|
作者
Su, Han-I [1 ]
Weissman, Tsachy [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
SCHEMES;
D O I
10.1109/ISIT.2010.5513338
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a discrete denoising problem, if the denoiser knows the clean source distribution, the Bayes optimal denoiser is the Bayes response of the posterior distribution of the source given the noisy observations. However, in many applications the source distribution is unknown. We consider the Bayes response based on the approximate posterior distribution induced by a universal lossless compression code. Motivated by this approach, we present the empirical conditional entropy-based denoiser. Simulations show that when the source alphabet is small, the proposed denoiser achieves the performance of the Universal Discrete DEnoiser ( DUDE). Furthermore, if the alphabet size increases, the proposed denoiser degrades more gracefully than the DUDE.
引用
收藏
页码:1648 / 1652
页数:5
相关论文
共 50 条
  • [1] Lossless compression-based steganalysis of LSB embedded images
    Boncelet, Charles
    Marvel, Lisa
    [J]. 2007 41ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2007, : 923 - 923
  • [2] Lossless compression-based progressive image transmission scheme
    Hung, KL
    Chang, CC
    Lin, IC
    [J]. IMAGING SCIENCE JOURNAL, 2004, 52 (04): : 212 - 224
  • [3] DATA DISCOVERY USING LOSSLESS COMPRESSION-BASED SPARSE REPRESENTATION
    Sabeti, Elyas
    Song, Peter X. K.
    Hero, Alfred O., III
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5539 - 5543
  • [4] Lossless compression-based detection of osteoporosis using bone X-ray imaging
    Alshamrani, Khalaf
    Alshamrani, Hassan A.
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (02) : 475 - 491
  • [5] Compression-based steganography
    Carpentieri, Bruno
    Castiglione, Arcangelo
    De Santis, Alfredo
    Palmieri, Francesco
    Pizzolante, Raffaele
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (08):
  • [6] Universal Lossless Compression of Graphical Data
    Delgosha, Payam
    Anantharam, Venkat
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1578 - 1582
  • [7] Universal Lossless Compression of Graphical Data
    Delgosha, Payam
    Anantharam, Venkat
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6962 - 6976
  • [8] Universal Lossless Compression of Erased Symbols
    Yu, Jiming
    Verdu, Sergio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) : 5563 - 5574
  • [9] Compression-Based Compressed Sensing
    Rezagah, Farideh E.
    Jalali, Shirin
    Erkip, Elza
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6735 - 6752
  • [10] Compression-based image registration
    Bardera, Anton
    Feixas, Miquel
    Boada, Imma
    Sbert, Mateu
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 436 - +