Estimating a gradual parameter change in an AR(1)-process

被引:2
|
作者
Huskova, Marie [1 ]
Praskova, Zuzana [1 ]
Steinebach, Josef G. [2 ]
机构
[1] Charles Univ Prague, Dept Probabil & Math Stat, Fac Math & Phys, Sokolovska 83, CZ-18675 Prague 8, Czech Republic
[2] Univ Cologne, Dept Math & Comp Sci, Weyertal 86-90, D-50931 Cologne, Germany
关键词
AR(1)-process; Gradual change; Change-point estimator; Consistency; Convergence rate; Asymptotic normality; AUTOREGRESSIVE TIME-SERIES; CHANGE-POINT; REGRESSION; BEHAVIOR; MODELS;
D O I
10.1007/s00184-021-00844-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the estimation of a change-point t(0) at which the parameter of a (non-stationary) AR(1)-process possibly changes in a gradual way. Making use of the observations X-1,..., X-n, we shall study the least squares estimator (t(0)) over cap for t(0), which is obtained by minimizing the sum of squares of residuals with respect to the given parameters. As a first result it can be shown that, under certain regularity and moment assumptions, (t(0)) over cap /n is a consistent estimator for t(0), where t(0) = left perpendicularn tau(0)right perpendicular, with 0 < tau(0) < 1, i.e., (t(0)) over cap /n P ->(P) tau(0) (n ->infinity). Based on the rates obtained in the proof of the consistency result, a first, but rough, convergence rate statement can immediately be given. Under somewhat stronger assumptions, a precise rate can be derived via the asymptotic normality of our estimator. Some results from a small simulation study are included to give an idea of the finite sample behaviour of the proposed estimator.
引用
收藏
页码:771 / 808
页数:38
相关论文
共 50 条
  • [41] Gradual Change Reliability Sensitivity Design for Spindle System on Fully Stochastic Process
    Wang, Xin-gang
    Wang, Bao-yan
    Chen, Xiaohui
    Hou, Dongxiao
    5TH INTERNATIONAL CONFERENCE ON MECHANICS AND MECHATRONICS RESEARCH (ICMMR 2018), 2018, 417
  • [42] UNIFORM INTERVAL ESTIMATION FOR AN AR(1) PROCESS WITH AR ERRORS
    Hill, Jonathan
    Li, Deyuan
    Peng, Liang
    STATISTICA SINICA, 2016, 26 (01) : 119 - 136
  • [43] Affine parameter estimation with gradual segmentation
    Sobue, T
    Hamada, N
    1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 775 - 779
  • [44] On unequally spaced AR(1) process
    Sindelár, J
    Knízek, J
    KYBERNETIKA, 2003, 39 (01) : 13 - 27
  • [45] L-Estimation for the Parameter of the AR(1) Model
    Han, Sang Moon
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2005, 18 (01) : 43 - 56
  • [46] ESTIMATING THE CHANGE IN A RENEWAL PROCESS WHEN THE DATA ARE COUNTS
    JOSEPH, L
    WOLFSON, DB
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (04) : 1431 - 1441
  • [47] Estimating the change point of a Poisson rate parameter with a linear trend disturbance
    Perry, MB
    Pignatiello, JJ
    Simpson, JR
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2006, 22 (04) : 371 - 384
  • [48] Copula parameter change test for nonlinear AR models with nonlinear GARCH errors
    Lee, Sangyeol
    Kim, Byungsoo
    STATISTICAL METHODOLOGY, 2015, 25 : 1 - 22
  • [49] Multivariate process parameter change identification by neural network
    Farzaneh Ahmadzadeh
    Jan Lundberg
    Thomas Strömberg
    The International Journal of Advanced Manufacturing Technology, 2013, 69 : 2261 - 2268
  • [50] Multivariate process parameter change identification by neural network
    Ahmadzadeh, Farzaneh
    Lundberg, Jan
    Stromberg, Thomas
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 69 (9-12): : 2261 - 2268