Estimating a gradual parameter change in an AR(1)-process

被引:2
|
作者
Huskova, Marie [1 ]
Praskova, Zuzana [1 ]
Steinebach, Josef G. [2 ]
机构
[1] Charles Univ Prague, Dept Probabil & Math Stat, Fac Math & Phys, Sokolovska 83, CZ-18675 Prague 8, Czech Republic
[2] Univ Cologne, Dept Math & Comp Sci, Weyertal 86-90, D-50931 Cologne, Germany
关键词
AR(1)-process; Gradual change; Change-point estimator; Consistency; Convergence rate; Asymptotic normality; AUTOREGRESSIVE TIME-SERIES; CHANGE-POINT; REGRESSION; BEHAVIOR; MODELS;
D O I
10.1007/s00184-021-00844-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the estimation of a change-point t(0) at which the parameter of a (non-stationary) AR(1)-process possibly changes in a gradual way. Making use of the observations X-1,..., X-n, we shall study the least squares estimator (t(0)) over cap for t(0), which is obtained by minimizing the sum of squares of residuals with respect to the given parameters. As a first result it can be shown that, under certain regularity and moment assumptions, (t(0)) over cap /n is a consistent estimator for t(0), where t(0) = left perpendicularn tau(0)right perpendicular, with 0 < tau(0) < 1, i.e., (t(0)) over cap /n P ->(P) tau(0) (n ->infinity). Based on the rates obtained in the proof of the consistency result, a first, but rough, convergence rate statement can immediately be given. Under somewhat stronger assumptions, a precise rate can be derived via the asymptotic normality of our estimator. Some results from a small simulation study are included to give an idea of the finite sample behaviour of the proposed estimator.
引用
下载
收藏
页码:771 / 808
页数:38
相关论文
共 50 条
  • [1] Estimating a gradual parameter change in an AR(1)-process
    Marie Hušková
    Zuzana Prášková
    Josef G. Steinebach
    Metrika, 2022, 85 : 771 - 808
  • [2] A novel method for estimating the parameter of a Gaussian AR(1) process with additive outliers
    Panichkitkosolkul, Wararit
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2011, 5 (01) : 58 - 68
  • [3] A robust approach for estimating change-points in the mean of an AR(1) process
    Chakar, S.
    Lebarbier, E.
    Levy-Leduc, C.
    Robin, S.
    BERNOULLI, 2017, 23 (02) : 1408 - 1447
  • [5] Estimating the parameters of the generalized Poisson AR(1) process
    AlNachawati, H
    Alwasel, I
    Alzaid, AA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 56 (04) : 337 - 352
  • [6] Change point estimates for the parameters of an AR(1) process
    Timmer, DH
    Pignatiello, JJ
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2003, 19 (04) : 355 - 369
  • [7] Modeling and estimating the credit cycle by a probit-AR(1)-process
    Höse, S
    Vogl, K
    FROM DATA AND INFORMATION ANALYSIS TO KNOWLEDGE ENGINEERING, 2006, : 534 - +
  • [8] IMPORTANCE OF ROBUST METHODS FOR PARAMETER ESTIMATING IN AR(p)
    Flimmel, Samuel
    Fojtik, Jan
    Mala, Ivana
    Prochazka, Jiri
    12TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2018, : 461 - 470
  • [9] Epidemic change tests for the mean of innovations of an AR(1) process
    Markeviciute, J.
    STATISTICS & PROBABILITY LETTERS, 2016, 112 : 79 - 91
  • [10] A speeded item response model with gradual process change
    Goegebeur, Yuri
    De Boeck, Paul
    Wollack, James A.
    Cohen, Allan S.
    PSYCHOMETRIKA, 2008, 73 (01) : 65 - 87