Asymmetric Distribution of the Solar Photospheric Magnetic-Field Values

被引:0
|
作者
Xu, Jing-Chen [1 ,2 ]
Li, Ke-Jun [1 ,3 ]
Gao, Peng-Xin [1 ,3 ]
机构
[1] Chinese Acad Sci, Yunnan Observ, Kunming 650011, Yunnan, Peoples R China
[2] Chinese Acad Sci, State Key Lab Space Weather, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Ctr Astron Megasci, Beijing 100012, Peoples R China
来源
ASTROPHYSICAL JOURNAL | 2021年 / 919卷 / 02期
基金
中国国家自然科学基金;
关键词
CYCLE; ARRAY;
D O I
10.3847/1538-4357/ac106e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Understanding the characteristics of the solar magnetic field is essential for interpreting solar activities and dynamo. In this research, we investigated the asymmetric distribution of the solar photospheric magnetic-field values, using synoptic charts constructed from space-borne high-resolution magnetograms. It is demonstrated that the Lorentzian function describes the distribution of magnetic-field values in the synoptic charts much better than the Gaussian function and this should reflect the gradual decay process from strong to weak magnetic fields. The asymmetry values are calculated under several circumstances, and the results generally show two periodicities related to the variation of the solar B (0) angle and the solar cycle, respectively. We argue that it is the small-scale magnetic fields, the inclination of the solar axis, the emergence and evolution of magnetic flux, and the polar fields that are responsible for the features of asymmetry values. We further determined the polar-field reversal time of solar cycles 23 and 24 with the flip of asymmetry values. Specifically, for cycle 24, we assert that the polar polarities of both hemispheres reversed at the same time-in 2014 March; as to cycle 23, the reversal time of the S-hemisphere is 2001 March, while the determination of the N-hemisphere is hampered by missing data.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] DYNAMICS OF SOLAR MAGNETIC-FIELD .4. EXAMPLES OF FORCE-FREE MAGNETIC-FIELD EVOLUTION IN RESPONSE TO PHOTOSPHERIC MOTIONS
    NAKAGAWA, Y
    TANAKA, K
    ASTROPHYSICAL JOURNAL, 1974, 190 (03): : 711 - 714
  • [12] PATTERNS IN THE PHOTOSPHERIC MAGNETIC-FIELD AND PERCOLATION THEORY
    SCHRIJVER, CJ
    ZWAAN, C
    BALKE, AC
    TARBELL, TD
    LAWRENCE, JK
    ASTRONOMY & ASTROPHYSICS, 1992, 253 (01) : L1 - L4
  • [13] THE SOURCE SURFACE AND PHOTOSPHERIC MAGNETIC-FIELD MODELS
    SAITO, T
    KOZUKA, Y
    OKI, T
    AKASOFU, SI
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A3) : 3807 - 3810
  • [14] PHOTOSPHERIC MAGNETIC-FIELD EVOLUTION AND ERUPTIVE FLARES
    FORBES, TG
    PRIEST, ER
    ASTROPHYSICAL JOURNAL, 1995, 446 (01): : 377 - 389
  • [15] THE EVOLUTION OF A CORONAL STREAMER AND THE PHOTOSPHERIC MAGNETIC-FIELD
    POLAND, AI
    MACQUEEN, RM
    SOLAR PHYSICS, 1981, 71 (02) : 361 - 379
  • [16] THE ROTATION OF THE SOLAR PHOTOSPHERIC MAGNETIC FIELD
    Xu, J. C.
    Gao, P. X.
    ASTROPHYSICAL JOURNAL, 2016, 833 (02):
  • [17] THE INTERNAL MAGNETIC-FIELD DISTRIBUTION AND THE DIAMETERS OF SOLAR MAGNETIC ELEMENTS
    ZAYER, I
    SOLANKI, SK
    STENFLO, JO
    ASTRONOMY & ASTROPHYSICS, 1989, 211 (02) : 463 - 475
  • [18] AVERAGE PHOTOSPHERIC POLOIDAL AND TOROIDAL MAGNETIC-FIELD COMPONENTS NEAR SOLAR MINIMUM - COMMENT
    FOUKAL, P
    DUVALL, TL
    SOLAR PHYSICS, 1980, 67 (01) : 9 - 12
  • [19] CALCULATION OF THE SOLAR MAGNETIC-FIELD FROM VALUES OBSERVED IN THE PHOTOSPHERE
    HANNAKAM, L
    ARCHIV FUR ELEKTROTECHNIK, 1984, 67 (06): : 353 - 359
  • [20] SOLAR MAGNETIC-FIELD DISTRIBUTION AND GEOMAGNETIC-ACTIVITY
    BUMBA, V
    HEJNA, L
    STUDIA GEOPHYSICA ET GEODAETICA, 1986, 30 (02) : 158 - 171