An Accurate Spline Polynomial Cubature Formula for Double Integration with Logarithmic Singularity

被引:0
|
作者
Bichi, Sirajo Lawan [1 ,2 ]
Eshkuvatov, Z. K. [3 ,4 ]
Long, N. M. A. Nik [1 ,4 ]
Bello, M. Y. [2 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Math, Serdang, Malaysia
[2] Bayero Univ Kano, Fac Sci, Dept Math, Kano, Nigeria
[3] Univ Sains Islam Malaysia, Fac Sci & Technol, Negeri Sembilan, Malaysia
[4] Univ Putra Malaysia, Inst Math Res INSPEM, Serdang, Malaysia
关键词
D O I
10.1063/1.4952513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studied the integration of logarithmic singularity problem J ((y) over bar) = integral integral(del) zeta((y) over bar) log vertical bar(y) over bar = (y) over bar (0)*vertical bar dA, where (y) over bar = (alpha, beta), (y) over bar (0) = (alpha(0), beta(0)), the domain del is rectangle (y) over bar [r(1), r(2)] x [r(3), r(4)]; the arbitrary point (y) over bar is an element of del and the fixed point (y) over bar (0) is an element of del. The given density function zeta((y) over bar), is smooth on the rectangular domain del and is in the functions class C-2,C-tau (del). Cubature formula (CF) for double integration with logarithmic singularities (LS) on a rectangle del is constructed by applying type (0, 2) modified spline function D-Gamma(P). The results obtained by testing the density functions zeta((y) over bar) as linear and absolute value functions shows that the constructed C-F is highly accurate.
引用
收藏
页数:8
相关论文
共 46 条
  • [31] A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz-Lerch Zeta Function
    Reynolds, Robert
    Stauffer, Allan
    SYMMETRY-BASEL, 2021, 13 (11):
  • [32] Numerical integration of atomic electron density with double exponential formula for density functional calculation
    Mitani, Masaki
    Yoshioka, Yasunori
    THEORETICAL CHEMISTRY ACCOUNTS, 2012, 131 (03) : 1 - 15
  • [33] Numerical integration of atomic electron density with double exponential formula for density functional calculation
    Masaki Mitani
    Yasunori Yoshioka
    Theoretical Chemistry Accounts, 2012, 131
  • [34] Numerical integration by using polynomial P5(x) of Newton-Gregory forward interpolation formula
    Jamil, Oras B.
    Tanak, Khader S.
    Abdulrazzaq, Zaid Abdulaziz
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 650 - 658
  • [35] Numerical integration by using polynomial P5(x) of Newton-Gregory forward interpolation formula
    Jamil, Oras B.
    Tanak, Khader S.
    Abdulrazzaq, Zaid Abdulaziz
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 650 - 658
  • [36] Numerical integration by using polynomial P5(x) of Newton-Gregory forward interpolation formula
    Jamil, Oras B.
    Tanak, Khader S.
    Abdulrazzaq, Zaid Abdulaziz
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 650 - 658
  • [37] A novel polishing stop for accurate integration of potassium yttrium double tungstate on silicon dioxide
    van Emmerik, Carlijn I.
    Martinussen, Simen M.
    Mu, Jinfeng
    Dijkstra, Meindert
    Kooijman, Roy
    Garcia-Blanco, Sonia M.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXII, 2018, 10535
  • [38] A modified formula for accurate determination of three-dimensional birefringence of fiber using modified subfringe integration method
    El-Morsy, M. A.
    MICROSCOPY RESEARCH AND TECHNIQUE, 2019, 82 (10) : 1681 - 1699
  • [39] Subpixel Accurate Calibration of Line-Scan Multi-Spectral Images Using a Polynomial or B-Spline based Registration Model
    Eckhard, Timo
    Eckhard, Jia
    Valero, Eva M.
    Hernandez-Andres, Javier
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2017, 61 (03)
  • [40] Construction of higher-order accurate time-step integration algorithms by equal-order polynomial projection
    Fung, TC
    JOURNAL OF VIBRATION AND CONTROL, 2005, 11 (01) : 19 - 49