An Accurate Spline Polynomial Cubature Formula for Double Integration with Logarithmic Singularity

被引:0
|
作者
Bichi, Sirajo Lawan [1 ,2 ]
Eshkuvatov, Z. K. [3 ,4 ]
Long, N. M. A. Nik [1 ,4 ]
Bello, M. Y. [2 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Math, Serdang, Malaysia
[2] Bayero Univ Kano, Fac Sci, Dept Math, Kano, Nigeria
[3] Univ Sains Islam Malaysia, Fac Sci & Technol, Negeri Sembilan, Malaysia
[4] Univ Putra Malaysia, Inst Math Res INSPEM, Serdang, Malaysia
关键词
D O I
10.1063/1.4952513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studied the integration of logarithmic singularity problem J ((y) over bar) = integral integral(del) zeta((y) over bar) log vertical bar(y) over bar = (y) over bar (0)*vertical bar dA, where (y) over bar = (alpha, beta), (y) over bar (0) = (alpha(0), beta(0)), the domain del is rectangle (y) over bar [r(1), r(2)] x [r(3), r(4)]; the arbitrary point (y) over bar is an element of del and the fixed point (y) over bar (0) is an element of del. The given density function zeta((y) over bar), is smooth on the rectangular domain del and is in the functions class C-2,C-tau (del). Cubature formula (CF) for double integration with logarithmic singularities (LS) on a rectangle del is constructed by applying type (0, 2) modified spline function D-Gamma(P). The results obtained by testing the density functions zeta((y) over bar) as linear and absolute value functions shows that the constructed C-F is highly accurate.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] Construction of Cubature Formula for Double Integration with Algebraic Singularity by Spline Polynomial
    Bichi, Sirajo Lawan
    Eshkuvatov, Z. K.
    Long, N. M. A. Nik
    Ismail, Fudziah
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 193 - 198
  • [2] Polynomial Spline Approach for Double Integrals with Algebraic Singularity
    Eshkuvatov, Z. K.
    Long, N. M. A. Nik
    Midi, Habshah
    Khaldjigitov, Abduvali
    INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435
  • [3] Numerical integration of logarithmic and nearly logarithmic singularity in BEMs
    Sladek, V
    Sladek, J
    Tanaka, M
    APPLIED MATHEMATICAL MODELLING, 2001, 25 (11) : 901 - 922
  • [5] Efficient Cubature Rules for the Numerical Integration of Logarithmic Singularities
    Niegemann, J.
    2014 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2014, : 601 - 604
  • [6] The Euler-Maclaurin Formula in Presence of a Logarithmic Singularity
    Ricardo Celorrio
    Francisco-Javier Sayas
    BIT Numerical Mathematics, 1999, 39 : 780 - 785
  • [7] The Euler-Maclaurin formula in presence of a logarithmic singularity
    Celorrio, R
    Sayas, FJ
    BIT, 1999, 39 (04): : 780 - 785
  • [8] ON SPLINE-ON-SPLINE NUMERICAL-INTEGRATION FORMULA
    SAKAI, M
    USMANI, RA
    JOURNAL OF APPROXIMATION THEORY, 1989, 59 (03) : 350 - 355
  • [9] Asymmetric cubature formulas for polynomial integration in the triangle and square
    Taylor, Mark A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (01) : 184 - 191
  • [10] Some inequalities for double integrals and applications for cubature formula
    Erden, Samet
    Sarikaya, Mehmet Zeki
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (02) : 271 - 295