A New Upper Bound on the Chromatic Number of Graphs with No Odd Kt Minor

被引:4
|
作者
Norin, Sergey [1 ]
Song, Zi-Xia [2 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
EXTREMAL FUNCTION;
D O I
10.1007/s00493-021-4390-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gerards and Seymour conjectured that every graph with no odd K-t minor is (t - 1)-colorable. This is a strengthening of the famous Hadwiger's Conjecture. Geelen et al. proved that every graph with no odd K-t minor is O(t root logt)-colorable. Using the methods the present authors and Postle recently developed for coloring graphs with no K-t minor, we make the first improvement on this bound by showing that every graph with no odd K-t minor is O(t(logt)(beta))-colorable for every beta > 1/4.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条