WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES

被引:1
|
作者
Qin, Mengjie [1 ]
Xu, Qingxiang [1 ]
Zamani, Ali [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Farhangian Univ, Dept Math, Tehran, Iran
基金
中国国家自然科学基金;
关键词
Hilbert C*-module; weighted Moore-Penrose inverse; indefinite inner-product space; MATRICES;
D O I
10.4134/JKMS.j190306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions are provided under which the weighted Moore-Penrose inverse A(MN)(dagger) exists, where A is an adjointable operator between Hilbert C*-modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore-Penrose inverses A(MN)(dagger) is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore-Penrose inverse is also provided.
引用
收藏
页码:691 / 706
页数:16
相关论文
共 50 条
  • [1] Weighted Moore-Penrose inverses of products and differences of weighted projections on indefinite inner-product spaces
    Tan, Yunfei
    Xu, Qingxiang
    Yan, Guanjie
    [J]. ADVANCES IN OPERATOR THEORY, 2020, 5 (03) : 796 - 815
  • [2] Weighted Moore-Penrose Inverses Associated with Weighted Projections on Indefinite Inner Product Spaces
    Yan, Guanjie
    Tan, Yunfei
    Xu, Qingxiang
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (04) : 1121 - 1134
  • [3] Weighted Moore–Penrose inverses of products and differences of weighted projections on indefinite inner-product spaces
    Yunfei Tan
    Qingxiang Xu
    Guanjie Yan
    [J]. Advances in Operator Theory, 2020, 5 : 796 - 815
  • [4] Representations for weighted Moore-Penrose inverses of partitioned adjointable operators
    Xu, Qingxiang
    Chen, Yonghao
    Song, Chuanning
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 10 - 30
  • [5] Weighted Moore–Penrose Inverses Associated with Weighted Projections on Indefinite Inner Product Spaces
    Guanjie Yan
    Yunfei Tan
    Qingxiang Xu
    [J]. Bulletin of the Iranian Mathematical Society, 2021, 47 : 1121 - 1134
  • [6] Moore-Penrose Inverse in Indefinite Inner Product Spaces
    Radojevic, Ivana M.
    Djordjevic, Dragan S.
    [J]. FILOMAT, 2017, 31 (12) : 3847 - 3857
  • [7] Moore-Penrose inverses of partitioned adjointable operators on Hilbert C*-modules
    Xu, Qingxiang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) : 2929 - 2942
  • [8] On the Weighted Moore-Penrose Inverses
    Xu, Zhaoliang
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 375 - 378
  • [9] MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE
    Kamaraj, K.
    Sivakumar, K. C.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 19 (1-2) : 297 - 310
  • [10] Moore-Penrose inverses of Gram matrices leaving a cone invariant in an indefinite inner product space
    Reddy, K. Appi
    Kurmayya, T.
    [J]. SPECIAL MATRICES, 2015, 3 (01): : 155 - 162