Learning Temporal Tagging Behaviour

被引:4
|
作者
Gruetze, Toni [1 ]
Yao, Gary [1 ]
Krestel, Ralf [1 ]
机构
[1] Hasso Plattner Inst, Potsdam, Germany
关键词
D O I
10.1145/2740908.2741701
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Social networking services, such as Facebook, Google+, and Twitter are commonly used to share relevant Web documents with a peer group. By sharing a document with her peers, a user recommends the content for others and annotates it with a short description text. This short description yield many chances for text summarization and categorization. Because today's social networking platforms are real-time media, the sharing behaviour is subject to many temporal effects, i.e., current events, breaking news, and trending topics. In this paper, we focus on time-dependent hashtag usage of the Twitter community to annotate shared Web-text documents. We introduce a framework for time-dependent hashtag recommendation models and introduce two content-based models. Finally, we evaluate the introduced models with respect to recommendation quality based on a Twitter-dataset consisting of links to Web documents that were aligned with hashtags.
引用
收藏
页码:1333 / 1338
页数:6
相关论文
共 50 条
  • [21] A Machine Learning Approach to POS Tagging
    Lluís Màrquez
    Lluís Padró
    Horacio Rodríguez
    [J]. Machine Learning, 2000, 39 : 59 - 91
  • [22] Tagging aquatic animals can disrupt natural behaviour
    不详
    [J]. MARINE POLLUTION BULLETIN, 2013, 77 (1-2) : 5 - 5
  • [23] Learning Syntactic Tagging of Macedonian Language
    Bonchanoski, Martin
    Zdravkova, Katerina
    [J]. COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2018, 15 (03) : 799 - 820
  • [24] Social tagging in a mobile learning environment
    Taibi, D.
    Gentile, M.
    Arrigo, M.
    Seta, L.
    Di Giuseppe, O.
    Novara, G.
    Fulantelli, G.
    [J]. ISM WORKSHOPS 2007: NINTH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA - WORKSHOPS, PROCEEDINGS, 2007, : 447 - 452
  • [25] A machine learning approach to POS tagging
    Màrquez, L
    Padró, L
    Rodríguez, H
    [J]. MACHINE LEARNING, 2000, 39 (01) : 59 - 91
  • [26] Tagging diversity in personal learning environments
    Yiwei Cao
    Dejan Kovachev
    Ralf Klamma
    Matthias Jarke
    Rynson W. H. Lau
    [J]. Journal of Computers in Education, 2015, 2 (1) : 93 - 121
  • [27] Folksonomy, Tagging and Taxonomy for Effective Learning
    Cannata, Cosimo
    [J]. INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2009, 4 (02) : 26 - 32
  • [28] Temporal Tagging of Noisy Clinical Texts in Brazilian Portuguese
    de Azevedo, Rafael Faria
    Santos Rodrigues, Joao Pedro
    da Silva Reis, Mayara Regina
    Cabral Moro, Claudia Maria
    Paraiso, Emerson Cabrera
    [J]. COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2018, 2018, 11122 : 231 - 241
  • [29] Effect of tagging marine turtles on nesting behaviour and reproductive success
    Broderick, AC
    Godley, BJ
    [J]. ANIMAL BEHAVIOUR, 1999, 58 : 587 - 591
  • [30] Analysis of the tagging behaviour of the social network of a user for the detection of the interests
    Mezghani, Manel
    Péninou, André
    Zayani, Corinne Amel
    Amous, Ikram
    Sèdes, Florence
    [J]. Ingenierie des Systemes d'Information, 2015, 20 (04): : 85 - 112