Tight bounds on parallel list marking

被引:0
|
作者
Bhatt, SN [1 ]
Bilardi, G
Herley, KT
Pucci, G
Ranade, A
机构
[1] Bell Commun Res Inc, Morristown, NJ 07960 USA
[2] Univ Padua, Dipartimento Elettron & Informat, I-35131 Padua, Italy
[3] Univ Illinois, Dept Elect Engn & Comp Sci, Chicago, IL 60607 USA
[4] Natl Univ Ireland Univ Coll Cork, Dept Comp Sci, Cork, Ireland
[5] Indian Inst Technol, Dept Comp Sci & Engn, Bombay 400076, Maharashtra, India
关键词
list marking; list ranking; linked structures; shared-memory machines; parallel algorithms; randomized algorithms; lower bounds;
D O I
10.1006/jpdc.1998.1447
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The list marking problem involves marking the nodes of an L-node linked list stored in the memory of a (p, n)-PRAM, when only the position of the head of the list is initially known, while the remaining list nodes are stored in arbitrary memory locations. Under the assumption that cells containing list nodes bear no distinctive tags distinguishing them from other cells, we establish an Omega(min{l, n/p}) randomized lower bound for l-node lists and present a deterministic algorithm whose running time is within a logarithmic additive term of this bound. Such a result implies that randomization cannot be exploited in any significant way in this setting. For the case where list cells are tagged in a way that differentiates them from other cells, the above lower bound still applies to deterministic algorithms, while we establish a tight Theta(min {l, l/p + root(n/p) log n }) bound for randomized algorithms. Therefore, in the latter case, randomization yields a better performance for a wide range of parameter values. (C) 1998 Academic Press.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [21] Tight Bounds for Distributed Selection
    Kuhn, Fabian
    Locher, Thomas
    Wattenhofer, Roger
    [J]. SPAA'07: PROCEEDINGS OF THE NINETEENTH ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2007, : 145 - +
  • [22] Tight bounds for the probability of overfitting
    K. V. Vorontsov
    [J]. Doklady Mathematics, 2009, 80 : 793 - 796
  • [23] Tight bounds for popping algorithms
    Guo, Heng
    He, Kun
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (02) : 371 - 392
  • [24] Tight Typings and Split Bounds
    Accattoli, Beniamino
    Graham-Lengrand, Stephane
    Kesner, Delia
    [J]. PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES, 2018,
  • [25] TIGHT LOWER BOUNDS FOR SHELLSORT
    WEISS, MA
    SEDGEWICK, R
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1988, 318 : 255 - 262
  • [26] Bounds for partial list colourings
    Haas, R
    Hanson, D
    MacGillivray, G
    [J]. ARS COMBINATORIA, 2003, 67 : 27 - 31
  • [27] Tight bounds on Lyapunov rank
    Michael Orlitzky
    [J]. Optimization Letters, 2022, 16 : 723 - 728
  • [28] Tight Bounds for Clock Synchronization
    Lenzen, Christoph
    Locher, Thomas
    Wattenhofer, Roger
    [J]. JOURNAL OF THE ACM, 2010, 57 (02)
  • [29] Combinatorial bounds for list decoding
    Guruswami, V
    Håstad, J
    Sudan, M
    Zuckerman, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (05) : 1021 - 1034
  • [30] Tight bounds on quantum searching
    Boyer, M
    Brassard, G
    Hoyer, P
    Tapp, A
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1998, 46 (4-5): : 493 - 505