Simple and honest confidence intervals in nonparametric regression

被引:28
|
作者
Armstrong, Timothy B. [1 ]
Kolesar, Michal [2 ]
机构
[1] Yale Univ, Dept Econ, New Haven, CT 06520 USA
[2] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Confidence intervals; regression discontinuity; nonparametric regression; C14; C21; MINIMAX LINEAR-ESTIMATION; ASYMPTOTIC EQUIVALENCE; INFERENCE; BANDS;
D O I
10.3982/QE1199
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we use critical values that take into account the possible bias of the estimator upon which the CIs are based. We show that this approach leads to CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive the optimal bandwidth for constructing honest CIs. We show that using the bandwidth that minimizes the maximum mean-squared error results in CIs that are nearly efficient and that in this case, the critical value depends only on the rate of convergence. For the common case in which the rate of convergence is n(-2/5), the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a Monte Carlo analysis and an empirical application.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [1] Confidence intervals for nonparametric regression
    Brown, Lawrence D.
    Fu, Xin
    Zhao, Linda H.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) : 149 - 163
  • [2] HONEST CONFIDENCE-REGIONS FOR NONPARAMETRIC REGRESSION
    LI, KC
    [J]. ANNALS OF STATISTICS, 1989, 17 (03): : 1001 - 1008
  • [3] Monotone Nonparametric Regression and Confidence Intervals
    Strand, Matthew
    Zhang, Yu
    Swihart, Bruce J.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) : 828 - 845
  • [4] Coverage Accuracy of Confidence Intervals in Nonparametric Regression
    Song-xi Chen
    [J]. Acta Mathematicae Applicatae Sinica, 2003, (03) : 387 - 396
  • [5] Coverage Accuracy of Confidence Intervals in Nonparametric Regression
    Song-xi Chen
    Yong-song Qin
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2003, 19 (3): : 387 - 396
  • [6] ON BOOTSTRAP CONFIDENCE-INTERVALS IN NONPARAMETRIC REGRESSION
    HALL, P
    [J]. ANNALS OF STATISTICS, 1992, 20 (02): : 695 - 711
  • [7] Automatic bandwidth choice and confidence intervals in nonparametric regression
    Neumann, MH
    [J]. ANNALS OF STATISTICS, 1995, 23 (06): : 1937 - 1959
  • [8] Confidence Intervals for Nonparametric Regression Functions with Missing Data
    Qin, Yongsong
    Qiu, Tao
    Lei, Qingzhu
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (19) : 4123 - 4142
  • [9] Graphical presentation of a nonparametric regression with bootstrapped confidence intervals
    Nicolich, M
    Jorgensen, G
    [J]. PROCEEDINGS OF THE TWENTY-THIRD ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, 1998, : 1395 - 1399
  • [10] ROBUST NONPARAMETRIC CONFIDENCE INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS
    Calonico, Sebastian
    Cattaneo, Matias D.
    Titiunik, Rocio
    [J]. ECONOMETRICA, 2014, 82 (06) : 2295 - 2326