Techno-economic study of CO2 capture from an existing coal-fired power plant:: MEA scrubbing vs. O2/CO2 recycle combustion

被引:436
|
作者
Singh, D
Croiset, E
Douglas, PL
Douglas, MA
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[2] Nat Resources Canada, CANMET Energy Technol Ctr, Nepean, ON K1A 1M1, Canada
关键词
CO2; capture; MEA; O-2/CO2; recycle; Aspen plus; economics;
D O I
10.1016/S0196-8904(03)00040-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO2 capture technologies are available for retrofit. One option is to separate CO2 from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O-2/CO2 recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO2 for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys & Aspen Plus. The results show that both processes are expensive options to capture CO2 from coal power plants, however O-2/ CO, appears to be a more attractive retrofit than MEA scrubbing. The CO2 capture cost for the MEA case is USD 53/ton of CO2 avoided, which translates into 3.3 phi/kW h. For the O-2/CO2 case the CO2 capture cost is lower at USD 35/ton of CO2 avoided, which translates into 2.4 phi/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3073 / 3091
页数:19
相关论文
共 50 条
  • [41] Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant
    Ren L.-X.
    Chang F.-L.
    Kang D.-Y.
    Chen C.-L.
    Journal of Membrane Science, 2021, 603
  • [42] A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture
    Goto, Kazuya
    Yogo, Katsunori
    Higashii, Takayuki
    APPLIED ENERGY, 2013, 111 : 710 - 720
  • [43] Coal-fired power plant with calcium oxide carbonation for post-combustion CO2 capture
    Romano, Matteo
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1099 - 1106
  • [44] Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle
    Le Moullec, Yann
    ENERGY, 2013, 49 : 32 - 46
  • [45] Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant
    Hanak, Dawid P.
    Biliyok, Chechet
    Anthony, Edward J.
    Manovic, Vasilije
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 42 : 226 - 236
  • [46] Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture
    Iloeje, Chukwunwike O.
    Zhao, Zhenlong
    Ghoniem, Ahmed F.
    APPLIED ENERGY, 2018, 231 : 1179 - 1190
  • [47] Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant
    Wang, Lu
    Yang, Ying
    Shen, Wenlong
    Kong, Xiangming
    Li, Ping
    Yu, Jianguo
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING SCIENCE, 2013, 101 : 615 - 619
  • [48] Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture
    Wang, Fu
    Deng, Shuai
    Zhao, Jun
    Wang, Junyao
    Sun, Taiwei
    Yan, Jinyue
    ENERGY, 2017, 119 : 278 - 287
  • [49] Recent research on gas scrubbing for CO2 capture from flue gases of coal-fired power stations
    Vogt, Monika
    Goldschmidt, Ralf
    Erich, Egon
    Epp, Bernhard
    Stankewitz, Christina
    Fahlenkamp, H.
    VDI Berichte, 2008, (2035): : 59 - 69
  • [50] Simulation of membrane-based CO2 capture in a coal-fired power plant
    Shao, Pinghai
    Dal-Cin, MauroM.
    Guiver, Michael D.
    Kumar, Ashwani
    JOURNAL OF MEMBRANE SCIENCE, 2013, 427 : 451 - 459