Cure kinetics of modified epoxy resins cured with dicyandiamide are studied. The influence of different heating rates in the curing process, such as curing behavior, morphology, and thermo-mechanical properties, is studied. Additionally, three different post-cure cycles at 180 degrees C are employed. Two butadiene-based toughening agents are used, a carboxyl-terminated polybutadiene-co-acrylonitril (CTBN) prepolymer and a functionalized block copolymer of polytetrahydrofuran and hydroxyl-terminated polybutadiene. The amphiphilic block copolymer enables investigations with a bimodal particle size morphology. All results are contrasted with those of the neat resin and butadiene-free block polymer. Faster curing processes result in smaller average particle sizes and better fracture toughness of the modified epoxy resins. Further improvements are achieved with additional post-cure cycles at 180 degrees C. An increased interfacial adhesion between the particles and the epoxy matrix is considered to be the main mechanism. Optimized lengths of the post-cure process can be determined with the butadiene-based toughening agents indicating a competing thermal degradation. Longer post-cures than 40 min lead to lower fracture toughness in the butadiene-based modified materials. In general, similar influences of the curing and post-curing process on the bimodal and unimodal distributed system can be observed differing in more intense dependencies of the bimodal system.