homogenization;
functional limit theorem;
reflected stochastic differential equation;
random medium;
Skorohod problem;
local time;
NEUMANN BOUNDARY-CONDITIONS;
TIME;
D O I:
10.1214/EJP.v15-776
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We investigate a functional limit theorem (homogenization) for Reflected Stochastic Differential Equations on a half-plane with stationary coefficients when it is necessary to analyze both the effective Brownian motion and the effective local time. We prove that the limiting process is a reflected non-standard Brownian motion. Beyond the result, this problem is known as a prototype of non-translation invariant problem making the usual method of the "environment as seen from the particle" inefficient.
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
Falkowski, Adrian
Slominski, Leszek
论文数: 0引用数: 0
h-index: 0
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland