Review of porous anodic aluminium oxide (AAO) applications for sensors, MEMS and biomedical devices

被引:28
|
作者
Ali, H. O.
机构
[1] IEEE, London
来源
关键词
SILICON; FABRICATION; ANODIZATION;
D O I
10.1080/00202967.2017.1358514
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Anodising of aluminium is one of the simplest metal surface finishing processes, and results in a porous anodic aluminium oxide (AAO) which is integral with the parent metal. Pore size, interpore spacing and thickness of the porous oxide film can be controlled by careful selection of the anodising electrolyte (type and concentration), and the operating parameters (voltage, temperature, time) employed. A self-ordered nanoporous AAO can be obtained without the need for expensive or complex processes required for traditional materials employed in microelectronics and MEMS applications (e.g. photolithography in the production of porous silicon). Planar and curved AAO surfaces can be manufactured. The simple and low-cost process for the production of AAO has enabled this material to gain inroads in the manufacture of various sensors and MEMS devices. This review paper discusses the anodising process and the resulting AAO structures tailored for MEMS, sensors, biomedical and nanotechnology fabrication.
引用
收藏
页码:290 / 296
页数:7
相关论文
共 50 条
  • [31] Formation of porous anodic oxide films containing chromium ions on aluminium
    Hokkaido Univ, Sapporo, Japan
    Mater Sci Forum, pt 1 (379-384):
  • [32] Magnetically controlled insertion of cobalt ferrite nanoparticles into a porous anodic aluminum oxide (AAO) membrane
    Mahhouti, Z.
    Mahfoud, T.
    Hamedoun, M.
    Hlil, E. K.
    El Marssi, M.
    Lahmar, A.
    Benyoussef, A.
    El Moussaoui, H.
    APPLIED NANOSCIENCE, 2022, 12 (11) : 3279 - 3286
  • [33] Magnetically controlled insertion of cobalt ferrite nanoparticles into a porous anodic aluminum oxide (AAO) membrane
    Z. Mahhouti
    T. Mahfoud
    M. Hamedoun
    E. K. Hlil
    M. El Marssi
    A. Lahmar
    A. Benyoussef
    H. El Moussaoui
    Applied Nanoscience, 2022, 12 : 3279 - 3286
  • [34] Sub-1mG MEMS inertial sensors for biomedical applications
    Yamane, Daisuke
    Konishi, Toshifumi
    Toshiyoshi, Hiroshi
    Sone, Masato
    Machida, Katsuyuki
    Miyake, Yoshihiro
    Masu, Kazuya
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017,
  • [35] Smart sensors/actuators for biomedical applications: Review
    Ponmozhi, J.
    Frias, Clara
    Marques, Torres
    Frazao, O.
    MEASUREMENT, 2012, 45 (07) : 1675 - 1688
  • [36] Microfabricated Tactile Sensors for Biomedical Applications: A Review
    Saccomandi, Paola
    Schena, Emiliano
    Oddo, Calogero Maria
    Zollo, Loredana
    Silvestri, Sergio
    Guglielmelli, Eugenio
    BIOSENSORS-BASEL, 2014, 4 (04): : 422 - 448
  • [37] Electrochemical anodic oxidation process of porous titanium granules for biomedical applications
    Tissue Engineering and Biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran, Iran
    不详
    Sci. Iran., 6 (2745-2751):
  • [38] Electrochemical anodic oxidation process of porous titanium granules for biomedical applications
    Karaji, Z. Gorgin
    Houshmand, B.
    Abbasi, S.
    Faghihi, S.
    SCIENTIA IRANICA, 2015, 22 (06) : 2745 - 2751
  • [39] Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications
    Ashraf, Muhammad Waseem
    Tayyaba, Shahzadi
    Afzulpurkar, Nitin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2011, 12 (06) : 3648 - 3704
  • [40] PMUT and CMUT Devices for Biomedical Applications: A Review
    Moisello, Elisabetta
    Novaresi, Lara
    Sarkar, Eshani
    Malcovati, Piero
    Costa, Tiago L.
    Bonizzoni, Edoardo
    IEEE ACCESS, 2024, 12 : 18640 - 18657