Self Affine Delone Sets and Deviation Phenomena

被引:9
|
作者
Schmieding, Scott [1 ]
Trevino, Rodrigo [2 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
[2] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
TOPOLOGICAL INVARIANTS; SUBSTITUTION TILINGS; LIMIT-THEOREMS; COHOMOLOGY;
D O I
10.1007/s00220-017-3011-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the growth of norms of ergodic integrals for the translation action on spaces coming from expansive, self-affine Delone sets. The linear map giving the self-affinity induces a renormalization map on the pattern space and we show that the rate of growth of ergodic integrals is controlled by the induced action of the renormalizing map on the cohomology of the pattern space up to boundary errors. We explore the consequences for the diffraction of such Delone sets, and explore in detail what the picture is for substitution tilings as well as for cut and project sets which are self-affine. We also explicitly compute some examples.
引用
收藏
页码:1071 / 1112
页数:42
相关论文
共 50 条
  • [1] Self Affine Delone Sets and Deviation Phenomena
    Scott Schmieding
    Rodrigo Treviño
    [J]. Communications in Mathematical Physics, 2018, 357 : 1071 - 1112
  • [2] Traces of Random Operators Associated with Self-Affine Delone Sets and Shubin's Formula
    Schmieding, Scott
    Trevino, Rodrigo
    [J]. ANNALES HENRI POINCARE, 2018, 19 (09): : 2575 - 2597
  • [3] Traces of Random Operators Associated with Self-Affine Delone Sets and Shubin’s Formula
    Scott Schmieding
    Rodrigo Treviño
    [J]. Annales Henri Poincaré, 2018, 19 : 2575 - 2597
  • [4] Self-similar Delone sets and quasicrystals
    Masakova, Z
    Patera, J
    Pelantova, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (21): : 4927 - 4946
  • [5] Automatic sets and Delone sets
    Barbé, A
    von Haeseler, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13): : 4017 - 4038
  • [6] Substitution Delone Sets
    [J]. Discrete & Computational Geometry, 2003, 29 : 175 - 209
  • [7] Diffusion on Delone sets
    Haeseler, Sebastian
    Huang, Xueping
    Lenz, Daniel
    Pogorzelski, Felix
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (06) : 1496 - 1510
  • [8] CHAOTIC DELONE SETS
    Lopez, Jesus A. Alvarez
    Lijo, Ramon Barral
    Hunton, John
    Nozawa, Hiraku
    Parker, John R.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (08) : 3781 - 3796
  • [9] Substitution delone sets
    Lagarias, JC
    Wang, Y
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 29 (02) : 175 - 209
  • [10] Diffusion on Delone sets
    Sebastian Haeseler
    Xueping Huang
    Daniel Lenz
    Felix Pogorzelski
    [J]. Journal of Statistical Physics, 2017, 167 : 1496 - 1510