Self-similar Delone sets and quasicrystals

被引:7
|
作者
Masakova, Z
Patera, J
Pelantova, E
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague 12000 2, Czech Republic
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
来源
关键词
D O I
10.1088/0305-4470/31/21/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we answer the question, whether any Delone set Lambda subset of R-n, invariant under quasiaddition of Berman and Moody, can be identified with a cut and project quasicrystal. For any such set Lambda, we find an acceptance window Omega, which is bounded but has only convex interior. The cut and project quasicrystal Sigma(Omega) is then identified with an affine image of Lambda. Constructive methods used in the paper, allow one, in principle, to put bounds on Omega from a given fragment of a Delone set.
引用
收藏
页码:4927 / 4946
页数:20
相关论文
共 50 条
  • [1] Self-similar porosity in quasicrystals
    Janot, C
    Loreto, L
    Farinato, R
    Mancini, L
    Baruchel, J
    Gastaldi, J
    [J]. QUASICRYSTALS, 1999, 553 : 55 - 66
  • [2] Repetitive Delone sets and quasicrystals
    Lagarias, JC
    Pleasants, PAB
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 831 - 867
  • [3] Lacunarity of self-similar and stochastically self-similar sets
    Gatzouras, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) : 1953 - 1983
  • [4] From Self-Similar Groups to Self-Similar Sets and Spectra
    Grigorchuk, Rostislav
    Nekrashevych, Volodymyr
    Sunic, Zoran
    [J]. FRACTAL GEOMETRY AND STOCHASTICS V, 2015, 70 : 175 - 207
  • [5] On the distance sets of self-similar sets
    Orponen, Tuomas
    [J]. NONLINEARITY, 2012, 25 (06) : 1919 - 1929
  • [6] JULIA SETS AND SELF-SIMILAR SETS
    KAMEYAMA, A
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1993, 54 (1-3) : 241 - 251
  • [7] Arithmetic on self-similar sets
    Zhao, Bing
    Ren, Xiaomin
    Zhu, Jiali
    Jiang, Kan
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (04): : 595 - 606
  • [8] The dimensions of self-similar sets
    Li, WX
    Xiao, DM
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (04) : 789 - 799
  • [9] Irrational self-similar sets
    Jia, Qi
    Li, Yuanyuan
    Jiang, Kan
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 461 - 472
  • [10] Gauges for the self-similar sets
    Wen, Sheng-You
    Wen, Zhi-Xiong
    Wen, Zhi-Ying
    [J]. MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1205 - 1214