On Generalizations of Fatou's Theorem for the Integrals with General Kernels

被引:3
|
作者
Karagulyan, G. A. [1 ]
Safaryan, M. H. [2 ]
机构
[1] Armenian Natl Acad Sci, Inst Math, Yerevan 0019, Armenia
[2] Yerevan State Univ, Yerevan 0049, Armenia
关键词
Fatou theorem; Littlewood theorem; Harmonic functions; NO TANGENTIAL LIMITS; POISSON KERNEL; SQUARE-ROOT; HARMONIC-FUNCTIONS; APPROACH REGIONS; CONVERGENCE;
D O I
10.1007/s12220-014-9479-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define lambda(r)-convergence, which is a generalization of nontangential convergence in the unit disc. We prove Fatou-type theorems on almost everywhere nontangential convergence of Poisson-Stieltjes integrals for general kernels {phi(r)}, forming an approximation of identity. We prove that the bound lim(r -> 1) sup lambda(r)parallel to phi(r)parallel to(infinity) < infinity is necessary and sufficient for almost everywhere lambda(r)-convergence of the integrals integral(T) phi r(t-x)d mu(t).
引用
收藏
页码:1459 / 1475
页数:17
相关论文
共 50 条