On Generalizations of Fatou's Theorem in Lp for Convolution Integrals with General Kernels

被引:0
|
作者
Safaryan, M. H. [1 ,2 ,3 ]
机构
[1] Yerevan State Univ, Alek Manukyan 1, Yerevan 0049, Armenia
[2] Armenian Natl Acad Sci, Inst Math, Baghramian Ave 24-5, Yerevan 0019, Armenia
[3] KAUST, Thuwal 23955, Saudi Arabia
关键词
Fatou theorem; Poisson kernel; Approximate identity; SQUARE-ROOT; POISSON KERNEL; MAXIMAL FUNCTIONS; CONVERGENCE;
D O I
10.1007/s12220-020-00397-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Fatou-type theorem on almost everywhere convergence of convolution integrals in spaces L-p (1 < p < infinity) for general kernels, forming an approximate identity. For a wide class of kernels, we show that obtained convergence regions are optimal in some sense. It is established a weak boundedness in L-p (1 = p < infinity) of the corresponding maximal operator.
引用
收藏
页码:3280 / 3299
页数:20
相关论文
共 50 条