Approach to Detecting Aberrations in Transcranial Ultrasound Imaging

被引:3
|
作者
Leonov, D., V [1 ,2 ]
Kulberg, N. S. [1 ,3 ]
Yakovleva, T., V [3 ]
Solovyova, P. D. [2 ]
机构
[1] Moscow Dept Hlth, Sci & Pract Clin Ctr Diagnost & Telemed Technol, Moscow 127051, Russia
[2] Natl Res Univ MPEI, Moscow 111250, Russia
[3] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
关键词
focused ultrasound; phase correction; phantom; synthetic aperture; beamforming; focusing; diagnostic imaging; PHASE; SKULL;
D O I
10.1134/S106377102202004X
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The presence of cranial bones in the ultrasound propagation path seriously complicates the imaging of tissues and blood vessels of the brain since the bones distort the ultrasound field, introducing phase and amplitude aberrations. Such distortions are not always apparent since complete information about the studied object is fundamentally inaccessible. The article develops a new approach that uses the synthetic aperture method to detect wavefront aberrations. A quantitative parameter is proposed that characterizes the presence of aberrations by measuring the RMS width of the angular intensity distribution. Experimental results were obtained at a frequency of 2 MHz using phantom and in vivo transcranial data. It is shown that in the presence of aberrations, the value of the proposed parameter increases by 22-45% with respect to the theoretical value for the aberrationless case.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [31] Caudal cell mass developmental aberrations: an imaging approach
    Chaturvedi, Apeksha
    Franco, Arie
    Chaturvedi, Abhishek
    Klionsky, Nina B.
    CLINICAL IMAGING, 2018, 52 : 216 - 225
  • [32] Blind equalization of phase aberrations in coherent imaging: Medical ultrasound and SAR
    Silverstein, SD
    PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 291 - 295
  • [33] Blind equalization of phase aberrations in coherent imaging: medical ultrasound and SAR
    Silverstein, Seth D.
    IEEE Signal Processing Workshop on Statistical Signal and Array Processing, SSAP, 2000, : 291 - 295
  • [34] A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound
    Kyriakou, Adamos
    Neufeld, Esra
    Werner, Beat
    Paulides, Margarethus Marius
    Szekely, Gabor
    Kuster, Niels
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2014, 30 (01) : 36 - 46
  • [35] ULTRASOUND AND CHROMOSOME ABERRATIONS
    BROCK, RD
    PEACOCK, WJ
    GEARD, CR
    KOSSOFF, G
    ROBINSON, DE
    MEDICAL JOURNAL OF AUSTRALIA, 1973, 2 (11) : 533 - 536
  • [36] Transcranial ultrasound angiography: A new contrast-specific imaging mode
    Hoelscher, T
    Wilkening, WG
    Olson, SE
    Alton, K
    Al-Khoury, L
    Cheng, YD
    Lyden, PD
    Mattrey, RF
    STROKE, 2005, 36 (02) : 487 - 488
  • [37] Detecting Deep Brain Stimulation Currents with High Resolution Transcranial Acoustoelectric Imaging
    Preston, Chet
    Alvarez, Alexander
    Barragan, Andres
    Kasoff, Willard S.
    Witte, Russell S.
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 2041 - 2044
  • [38] A Blind Deconvolution Approach to Ultrasound Imaging
    Yu, Chengpu
    Zhang, Cishen
    Xie, Lihua
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (02) : 271 - 280
  • [39] Ultrasound focusing using magnetic resonance acoustic radiation force imaging: Application to ultrasound transcranial therapy
    Hertzberg, Y.
    Volovick, A.
    Zur, Y.
    Medan, Y.
    Vitek, S.
    Navon, G.
    MEDICAL PHYSICS, 2010, 37 (06) : 2934 - 2942
  • [40] Sonothrombolysis with transcranial ultrasound
    Eggers, J.
    Ohlrich, M.
    Roessler, F.
    NERVENHEILKUNDE, 2012, 31 (06) : 428 - 432