Evolutionary algorithms for the optimization of Modified UNIFAC parameters

被引:14
|
作者
Kleiber, M [1 ]
Axmann, JK
机构
[1] Aventis Res & Technol GmbH & Co KG, D-65926 Frankfurt, Germany
[2] Studsvik Scandpower GmbH, D-22083 Hamburg, Germany
关键词
D O I
10.1016/S0098-1354(98)00266-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Over the last two decades, the UNIFAC group contribution method has been widely used for the prediction of vapor-liquid equilibria. For application to refrigerant mixtures, additional structure groups were introduced and verified by fitting the interaction parameters with satisfactory results. Analogously, the new structural groups should be implemented in the Modified UNIFAC method, which uses temperature-dependent interaction parameters and adjustable group surface area and volume parameters to achieve a better description of the behaviour of the mixtures. In order to fit these parameters to experimental data, an optimization problem with 386 variables was solved. This was done by applying Evolutionary Algorithms to mathematical optimization, involving the mutation-selection principle known from biology. The optimum interplay of many well-known strategies as well as the use of parallel computers resulted in levels well below the local extremes found using a conventional search method. The EVOBOX program package can be used for any minimization task with multivariable functions. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:63 / 82
页数:20
相关论文
共 50 条
  • [31] A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization
    Patrice Calégari
    Giovanni Coray
    Alain Hertz
    Daniel Kobler
    Pierre Kuonen
    Journal of Heuristics, 1999, 5 : 145 - 158
  • [32] Collaborative Evolutionary Algorithms for Combinatorial Optimization
    Gog, Anca
    Dumitrescu, D.
    Hirsbrunner, Beat
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1511 - 1511
  • [33] EVOLUTIONARY ALGORITHMS IN AIRCRAFT TRIM OPTIMIZATION
    Tupy, Jaroslav
    Zelinka, Ivan
    MENDEL 2008, 2008, : 50 - 58
  • [34] Comparison of Evolutionary Algorithms for design optimization
    Jakob, W
    Gorges-Schleuter, M
    Sieber, I
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN V, 1998, 1498 : 917 - 926
  • [35] Evolutionary algorithms and water resources optimization
    Olofintoye, Oluwatosin
    Adeyemo, Josiah
    Otieno, Fred
    Advances in Intelligent Systems and Computing, 2013, 175 ADVANCES : 491 - 504
  • [36] Evolutionary Algorithms and Matroid Optimization Problems
    Reichel, Joachim
    Skutella, Martin
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 947 - 954
  • [37] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [38] OPTIMIZATION OF TURNING USING EVOLUTIONARY ALGORITHMS
    Cukor, Goran
    Jurkovic, Zoran
    ENGINEERING REVIEW, 2010, 30 (02) : 1 - 10
  • [39] Evolutionary Algorithms and Matroid Optimization Problems
    Reichel, Joachim
    Skutella, Martin
    ALGORITHMICA, 2010, 57 (01) : 187 - 206
  • [40] Evolutionary Algorithms and Matroid Optimization Problems
    Joachim Reichel
    Martin Skutella
    Algorithmica, 2010, 57 : 187 - 206