Singular rank one perturbations

被引:0
|
作者
Astaburuaga, M. A. [1 ]
Cortes, V. H. [1 ]
Fernandez, C. [1 ]
Del Rio, R. [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Univ Nacl Autonoma Mexico, IIMAS, Mexico City, DF, Mexico
关键词
D O I
10.1063/5.0061250
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, A = B + V represents a self-adjoint operator acting on a Hilbert space H. We set a general theoretical framework and obtain several results for singular perturbations of A of the type A(beta) = A + beta tau*tau for tau being a functional defined in a subspace of H. In particular, we apply these results to H-beta = -Delta + V + beta|delta ><delta|, where delta is the singular perturbation given by delta(phi) = integral(S)phi d sigma, where S is a suitable hypersurface in R-n. Using the fact that the singular perturbation tau*tau is a sort of rank one perturbation of the operator A, it is possible to prove the invariance of the essential spectrum of A under these singular perturbations. The main idea is to apply an adequate Krein's formula in this singular framework. As an additional result, we found the corresponding relationship between the Green's functions associated with the operators H-0 = Delta + V and H-beta, and we give a result about the existence of a pure point spectrum (eigenvalues) of H-beta. We also study the case beta goes to infinity.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Resonances under rank-one perturbations
    Bourget, Olivier
    Cortes, Victor H.
    Del Rio, Rafael
    Fernandez, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [42] RANK-ONE PERTURBATIONS WITH INFINITESIMAL COUPLING
    KISELEV, A
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 345 - 356
  • [43] On hypercyclic rank one perturbations of unitary operators
    Baranov, Anton
    Kapustin, Vladimir
    Lishanskii, Andrei
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 961 - 968
  • [44] RANK-ONE PERTURBATIONS AT INFINITE COUPLING
    GESZTESY, F
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) : 245 - 252
  • [45] Rank-one perturbations of diagonal operators
    Eugen J. Ionascu
    Integral Equations and Operator Theory, 2001, 39 : 421 - 440
  • [46] INVARIANT FACTORS UNDER RANK ONE PERTURBATIONS
    THOMPSON, RC
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (01): : 240 - 245
  • [47] Rank-one perturbations of matrix pencils
    Baragana, Itziar
    Roca, Alicia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 (606) : 170 - 191
  • [48] On Rank One Perturbations of Complex Symmetric Operators
    Ko, Eungil
    Lee, Ji Eun
    FILOMAT, 2015, 29 (08) : 1795 - 1809
  • [49] Eigenvalues of rank one perturbations of unstructured matrices
    Ran, Andre C. M.
    Wojtylak, Michal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 589 - 600
  • [50] Rank one perturbations in a Pontryagin space with one negative square
    Derkach, V
    Hassi, S
    de Snoo, H
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) : 317 - 349