PARTIAL REGULARITY OF MINIMIZERS OF HIGHER ORDER INTEGRALS WITH (p, q)-GROWTH

被引:1
|
作者
Schemm, Sabine [1 ]
机构
[1] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
关键词
Higher order functionals; non-standard growth; regularity theory; QUASI-CONVEX INTEGRALS; VARIATIONAL INTEGRALS; MULTIPLE INTEGRALS; GROWTH-CONDITIONS; LOWER SEMICONTINUITY; FUNCTIONALS; EXPONENT; CALCULUS;
D O I
10.1051/cocv/2010016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider higher order functionals of the form F[u] = integral(Omega) f(D-m u)dx for u : R-n superset of Omega -> R-N, where the integrand f : circle dot(m) (R-n, R-N) -> R, m >= 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition gamma vertical bar A vertical bar(p) <= f(A) <= L(1+vertical bar A vertical bar(q)) for all A is an element of circle dot(m) (R-n, R-N), with gamma, L > 0 and 1 < p <= q < min {p + 1/n, 2n-1/2n-1p}. We study minimizers of the functional Finverted right perpendicular.inverted left perpendicular and prove a partial C-loc(m,alpha)-regularity result.
引用
收藏
页码:472 / 492
页数:21
相关论文
共 50 条
  • [41] Higher integrability for minimizers of integral functionals with (p, q) growth
    Esposito, L
    Leonetti, F
    Mingione, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) : 414 - 438
  • [42] Partial regularity of minimizers of p(x)-growth functionals with p(x) &gt; 1
    Nio, Erika
    Usuba, Kunihiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 156 : 197 - 214
  • [43] A boundary regularity result for minimizers of variational integrals with nonstandard growth
    Bulicek, Miroslav
    Maringova, Erika
    Stroffolini, Bianca
    Verde, Anna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 153 - 168
  • [44] PARTIAL REGULARITY OF MINIMIZERS
    GIAQUINTA, M
    LECTURE NOTES IN MATHEMATICS, 1986, 1192 : 215 - 219
  • [45] Gradient regularity for minimizers of functionals under p-q subquadratic growth
    Leonetti, F
    Mascolo, E
    Siepe, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (03): : 571 - 586
  • [46] Partial regularity for local minimizers of splitting-type variational integrals
    Bildhauer, M.
    Fuchs, M.
    ASYMPTOTIC ANALYSIS, 2007, 55 (1-2) : 33 - 47
  • [47] Partial regularity for minimizers of discontinuous quasi-convex integrals with degeneracy
    Boegelein, Verena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1052 - 1100
  • [48] Lipschitz regularity for degenerate elliptic integrals with p, q-growth
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    di Napoli, Antonia Passarelli
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, : 443 - 465
  • [49] Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth
    Duzaar, F
    Kronz, M
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2002, 17 (2-3) : 139 - 152
  • [50] Partial Regularity for BV Minimizers
    Gmeineder, Franz
    Kristensen, Jan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (03) : 1429 - 1473