Quantifying the ion selectivity of the Ca2+ site in photosystem II:: Evidence for direct involvement of Ca2+ in O2 formation

被引:151
|
作者
Vrettos, JS [1 ]
Stone, DA [1 ]
Brudvig, GW [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
关键词
D O I
10.1021/bi010679z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O-2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII, Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O-2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 Angstrom) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands, Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.
引用
收藏
页码:7937 / 7945
页数:9
相关论文
共 50 条
  • [31] INHIBITION OF CA2+ ENTRY BY CA2+ OVERLOADING OF INTRACELLULAR CA2+ STORES IN HUMAN PLATELETS
    KIMURA, M
    CHO, JH
    REEVES, JP
    AVIV, A
    JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479 (01): : 1 - 10
  • [32] Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle
    Ríos, E
    Brum, G
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2002, 7 : D1195 - D1211
  • [33] Nanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor
    Tay, Lai Hock
    Dick, Ivy E.
    Yang, Wanjun
    Mank, Marco
    Griesbeck, Oliver
    Yue, David T.
    NATURE COMMUNICATIONS, 2012, 3
  • [34] The Influence of Ca2+ Buffers on Free [Ca2+] Fluctuations and the Effective Volume of Ca2+ Microdomains
    Weinberg, Seth H.
    Smith, Gregory D.
    BIOPHYSICAL JOURNAL, 2014, 106 (12) : 2693 - 2709
  • [35] CA2+ TRAFFIC BETWEEN EXTERNAL MEDIUM AND CA2+ STORES IS CA2+ REGULATED IN FIBROBLASTS
    GAILLY, P
    HERMANS, E
    GILLIS, JM
    JOURNAL OF PHYSIOLOGY-LONDON, 1995, 487P : P10 - P10
  • [36] Nanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor
    Lai Hock Tay
    Ivy E. Dick
    Wanjun Yang
    Marco Mank
    Oliver Griesbeck
    David T. Yue
    Nature Communications, 3
  • [37] CA2+ CIRCULATIONS GENERATED BY CA2+-SENSITIVE CA2+ CHANNELS
    PELCE, P
    LEONETTI, M
    EUROPHYSICS LETTERS, 1995, 30 (04): : 221 - 225
  • [38] Computational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca2+ or Ca2+ Substituted by Sr2+
    Vogt, Leslie
    Ertem, Mehmed Z.
    Pal, Rhitankar
    Brudvig, Gary W.
    Batista, Victor S.
    BIOCHEMISTRY, 2015, 54 (03) : 820 - 825
  • [39] Influence of NO and [Ca2+]o on [Ca2+]i homeostasis in rat ventricular cardiomyocytes
    Mitrokhin, Vadim
    Mladenov, Mitko
    Gorbacheva, Lyubov
    Babkina, Irina
    Lovchikova, Irina
    Kazanski, Viktor
    Kamkin, Andre
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (05) : 1338 - 1343
  • [40] Theoretical Study on the Role of Ca2+ at the S2 State in Photosystem II
    Yang, Jingxiu
    Hatakeyama, Makoto
    Ogata, Koji
    Nakamura, Shinichiro
    Li, Can
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (49): : 14215 - 14222