Robust estimation and confidence interval in meta-regression models

被引:5
|
作者
Yu, Dalei [1 ]
Ding, Chang [1 ]
He, Na [2 ]
Wang, Ruiwu [3 ]
Zhou, Xiaohua [4 ]
Shi, Lei [1 ]
机构
[1] Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Yunnan, Peoples R China
[2] Ind & Commerce Adm Yunnan Prov, Kunming 650228, Yunnan, Peoples R China
[3] Northwestern Polytech Univ, Ctr Ecol & Environm Sci, Xian 710072, Shaanxi, Peoples R China
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Confidence interval; Meta-regression mode; Outlier; Random effect; Robust estimation; Second-order stochastic expansion; MAXIMUM-LIKELIHOOD ESTIMATOR; INFLUENCE DIAGNOSTICS; VARIANCE-ESTIMATION; METAANALYSIS; HETEROGENEITY; TUBERCULOSIS; INFERENCE; OUTLIER;
D O I
10.1016/j.csda.2018.08.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Meta-analysis provides a quantitative method for combining results from independent studies with the same treatment. However, existing estimation methods are sensitive to the presence of outliers in the datasets. In this paper we study the robust estimation for the parameters in meta-regression, including the between-study variance and regression parameters. Huber's rho function and Tukey's biweight function are adopted to derive the formulae of robust maximum likelihood (ML) estimators. The corresponding algorithms are developed. The asymptotic confidence interval and second-order-corrected confidence interval are investigated. Extensive simulation studies are conducted to assess the performance of the proposed methodology, and our results show that the robust estimators are promising and outperform the conventional ML and restricted maximum likelihood estimators when outliers exist in the dataset. The proposed methods are applied in three case studies and the results further support the eligibility of our methods in practical situations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 118
页数:26
相关论文
共 50 条
  • [41] Urban Residential Water Demand and Household Size: A Robust Meta-Regression Analysis
    Jegnie, Alemken
    Fogarty, James
    Iftekhar, Sayed
    ECONOMIC RECORD, 2023, 99 (326) : 436 - 453
  • [42] Cluster-robust estimators for multivariate mixed-effects meta-regression
    Welz T.
    Viechtbauer W.
    Pauly M.
    Computational Statistics and Data Analysis, 2023, 179
  • [43] Bayesian multivariate skew meta-regression models for individual patient data
    Ibrahim, Joseph G.
    Kim, Sungduk
    Chen, Ming-Hui
    Shah, Arvind K.
    Lin, Jianxin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (10-11) : 3415 - 3436
  • [44] EXPLORATION OF NETOWRK META-REGRESSION MODELS APPLIED TO COMPLEX EVIDENCE NETWORKS
    Batson, S.
    Sutton, A. J.
    VALUE IN HEALTH, 2018, 21 : S399 - S399
  • [45] Meta-models for confidence estimation in speech recognition
    Dasmahapatra, S
    Cox, S
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 1815 - 1818
  • [46] Cognitive behavioral therapy for primary care depression and anxiety: a secondary meta-analytic review using robust variance estimation in meta-regression
    Zhang, Anao
    Borhneimer, Lindsay A.
    Weaver, Addie
    Franklin, Cynthia
    Hai, Audrey Hang
    Guz, Samantha
    Shen, Li
    JOURNAL OF BEHAVIORAL MEDICINE, 2019, 42 (06) : 1117 - 1141
  • [47] Cognitive behavioral therapy for primary care depression and anxiety: a secondary meta-analytic review using robust variance estimation in meta-regression
    Anao Zhang
    Lindsay A. Borhneimer
    Addie Weaver
    Cynthia Franklin
    Audrey Hang Hai
    Samantha Guz
    Li Shen
    Journal of Behavioral Medicine, 2019, 42 : 1117 - 1141
  • [48] Ratio of proportions and the use of the delta method for confidence interval estimation in logistic regression
    deOliveira, NF
    Santana, VS
    Lopes, AA
    REVISTA DE SAUDE PUBLICA, 1997, 31 (01): : 90 - 99
  • [49] Generalised interval estimation in the random effects meta regression model
    Friedrich, Thomas
    Knapp, Guido
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 165 - 179
  • [50] Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression
    White, Ian R.
    Barrett, Jessica K.
    Jackson, Dan
    Higgins, Julian P. T.
    RESEARCH SYNTHESIS METHODS, 2012, 3 (02) : 111 - 125