Measure theory;
(mu;
nu)-ergodic;
nu)-pseudo almost periodic and automorphic functions;
evolution families;
nonautonomous equations;
neutral systems;
PSEUDO;
D O I:
10.4067/S0719-06462021000100063
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we give sufficient conditions on k is an element of L-1(R) and the positive measures mu, nu such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product zeta f = k * f. We provide an appropriate example to illustrate our convolution results. As a consequence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of (mu, nu)-pseudo-almost periodic (respectively, (mu, nu)-pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.
机构:
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
Liang, Jin
Xiao, Ti-Jun
论文数: 0|引用数: 0|
h-index: 0|
机构:
Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
Xiao, Ti-Jun
Zhang, Jun
论文数: 0|引用数: 0|
h-index: 0|
机构:
Cent China Normal Univ, Dept Math, Wuhan 430079, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China