Convolutions in (μ, ν)-pseudo-almost periodic and (μ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations

被引:0
|
作者
Bekolle, David [1 ]
Ezzinbi, Khalil [2 ]
Fatajou, Samir [2 ]
Danga, Duplex Elvis Houpa [1 ]
Besseme, Fritz Mbounja [3 ]
机构
[1] Univ Ngaoundere, Fac Sci, Dept Math, POB 454, Ngaoundere, Cameroon
[2] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Math, BP 2390, Marrakech, Morocco
[3] Univ Ngaoundere, Dept Mines & Geol, Sch Geol & Min Engn, POB 454, Ngaoundere, Cameroon
来源
CUBO-A MATHEMATICAL JOURNAL | 2021年 / 23卷 / 01期
关键词
Measure theory; (mu; nu)-ergodic; nu)-pseudo almost periodic and automorphic functions; evolution families; nonautonomous equations; neutral systems; PSEUDO;
D O I
10.4067/S0719-06462021000100063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give sufficient conditions on k is an element of L-1(R) and the positive measures mu, nu such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product zeta f = k * f. We provide an appropriate example to illustrate our convolution results. As a consequence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of (mu, nu)-pseudo-almost periodic (respectively, (mu, nu)-pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.
引用
收藏
页码:63 / 85
页数:23
相关论文
共 50 条