scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles

被引:98
|
作者
Jin, Suoqin [1 ]
Zhang, Lihua [1 ,2 ]
Nie, Qing [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
关键词
Integrative analysis; Single-cell multiomics; Simultaneous measurements; Sparse epigenomic profile; GLUCOCORTICOID-RECEPTOR; EXPRESSION; MOUSE; ACCESSIBILITY;
D O I
10.1186/s13059-020-1932-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Simultaneous measurements of transcriptomic and epigenomic profiles in the same individual cells provide an unprecedented opportunity to understand cell fates. However, effective approaches for the integrative analysis of such data are lacking. Here, we present a single-cell aggregation and integration (scAI) method to deconvolute cellular heterogeneity from parallel transcriptomic and epigenomic profiles. Through iterative learning, scAI aggregates sparse epigenomic signals in similar cells learned in an unsupervised manner, allowing coherent fusion with transcriptomic measurements. Simulation studies and applications to three real datasets demonstrate its capability of dissecting cellular heterogeneity within both transcriptomic and epigenomic layers and understanding transcriptional regulatory mechanisms.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Single-cell epigenomic characterization of T cells
    Brownell, I.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2018, 138 (09) : 1891 - 1891
  • [42] Integrative analysis of single-cell transcriptomic and spatial profiles characterized distinct tumor microenvironment phenotypes in hormone receptor positive (HR plus ) breast cancer
    Shimada, Kenichi
    Cui, Yvonne X.
    Goldberg, Jonathan S.
    Pastorello, Ricardo
    Davis, Janae
    Vallius, Tuulia
    Kania, Lukas
    Patel, Ashka
    Moore, Mckenna
    Ogayo, Esther R.
    Dillon, Deborah
    Sorger, Peter K.
    Guerriero, Jennifer L.
    Mittendorf, Elizabeth A.
    CANCER RESEARCH, 2022, 82 (04)
  • [43] Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes
    Wang, Li
    Yang, Yuchen
    Ma, Hong
    Xie, Yifang
    Xu, Jun
    Near, David
    Wang, Haofei
    Garbutt, Tiffany
    Li, Yun
    Liu, Jiandong
    Qian, Li
    CARDIOVASCULAR RESEARCH, 2022, 118 (06) : 1548 - 1563
  • [44] Single-cell transcriptomic and epigenomic landscapes of innate and adaptive immune cells in metastatic melanoma treated with immunotherapy
    Yang, Jiekun
    Fu, Doris
    Galani, Kyriakitsa
    Ho, Li-Lun
    Robitschek, Emily J.
    Frederick, Dennie T.
    Yadav, Sandeep K.
    Deng, Wentao
    Singh, Anand K.
    Burke, Kelly P.
    Wang, Cassia
    Sharova, Tatyana
    Liu, David
    Rai, Kunal
    Boland, Genevieve M.
    Kellis, Manolis
    CANCER RESEARCH, 2023, 83 (07)
  • [45] Single-cell analysis reveals transcriptomic and epigenomic impacts on the maternal–fetal interface following SARS-CoV-2 infection
    Lin Gao
    Vrinda Mathur
    Sabrina Ka Man Tam
    Xuemeng Zhou
    Ming Fung Cheung
    Lu Yan Chan
    Guadalupe Estrada-Gutiérrez
    Bo Wah Leung
    Sakita Moungmaithong
    Chi Chiu Wang
    Liona C. Poon
    Danny Leung
    Nature Cell Biology, 2023, 25 : 1047 - 1060
  • [46] Computational methods for the integrative analysis of single-cell data
    Forcato, Mattia
    Romano, Oriana
    Bicciato, Silvio
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03) : 20 - 29
  • [47] Integrative and comparative single-cell analysis reveals transcriptomic difference between human tumefactive demyelinating lesion and glioma
    Chen, Xiao-Yong
    Chen, Yue
    Fang, Wen-Hua
    Wu, Zan-Yi
    Wang, Deng-Liang
    Xu, Ya-Wen
    Yu, Liang-Hong
    Lin, Yuan-Xiang
    Kang, De-Zhi
    Ding, Chen-Yu
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [48] Parallel single-cell analysis microfluidic platform
    van den Brink, Floris T. G.
    Gool, Elmar
    Frimat, Jean-Philippe
    Bomer, Johan
    van den Berg, Albert
    Le Gac, Severine
    ELECTROPHORESIS, 2011, 32 (22) : 3094 - 3100
  • [49] Integrative and comparative single-cell analysis reveals transcriptomic difference between human tumefactive demyelinating lesion and glioma
    Xiao-Yong Chen
    Yue Chen
    Wen-Hua Fang
    Zan-Yi Wu
    Deng-Liang Wang
    Ya-Wen Xu
    Liang-Hong Yu
    Yuan-Xiang Lin
    De-Zhi Kang
    Chen-Yu Ding
    Communications Biology, 5
  • [50] Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data
    Zeng, Pengcheng
    Wangwu, Jiaxuan
    Lin, Zhixiang
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)