scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles

被引:98
|
作者
Jin, Suoqin [1 ]
Zhang, Lihua [1 ,2 ]
Nie, Qing [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
关键词
Integrative analysis; Single-cell multiomics; Simultaneous measurements; Sparse epigenomic profile; GLUCOCORTICOID-RECEPTOR; EXPRESSION; MOUSE; ACCESSIBILITY;
D O I
10.1186/s13059-020-1932-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Simultaneous measurements of transcriptomic and epigenomic profiles in the same individual cells provide an unprecedented opportunity to understand cell fates. However, effective approaches for the integrative analysis of such data are lacking. Here, we present a single-cell aggregation and integration (scAI) method to deconvolute cellular heterogeneity from parallel transcriptomic and epigenomic profiles. Through iterative learning, scAI aggregates sparse epigenomic signals in similar cells learned in an unsupervised manner, allowing coherent fusion with transcriptomic measurements. Simulation studies and applications to three real datasets demonstrate its capability of dissecting cellular heterogeneity within both transcriptomic and epigenomic layers and understanding transcriptional regulatory mechanisms.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles
    Suoqin Jin
    Lihua Zhang
    Qing Nie
    Genome Biology, 21
  • [2] Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types
    Wu, Wenming
    Zhang, Wensheng
    Ma, Xiaoke
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [3] scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data
    Li, Wei
    Xiang, Bin
    Yang, Fan
    Rong, Yu
    Yin, Yanbin
    Yao, Jianhua
    Zhang, Han
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [4] Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis
    Blair, Andrew P.
    Hu, Robert K.
    Farah, Elie N.
    Chi, Neil C.
    Pollard, Katherine S.
    Przytycki, Pawel F.
    Kathiriya, Irfan S.
    Bruneau, Benoit G.
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [5] Integrative Single-Cell Transcriptomic Analysis of Human Fetal Thymocyte Development
    Li, Yuchen
    Zeng, Weihong
    Li, Tong
    Guo, Yanyan
    Zheng, Guangyong
    He, Xiaoying
    Bai, Lilian
    Ding, Guolian
    Jin, Li
    Liu, Xinmei
    FRONTIERS IN GENETICS, 2021, 12
  • [6] Single-cell Transcriptomic Analysis
    Zheng, Zhihong
    Chen, Enguo
    Lu, Weiguo
    Mouradian, Gary
    Hodges, Matthew
    Liang, Mingyu
    Liu, Pengyuan
    Lu, Yan
    COMPREHENSIVE PHYSIOLOGY, 2020, 10 (02) : 767 - 783
  • [7] Integrative single-cell analysis
    Stuart, Tim
    Satija, Rahul
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 257 - 272
  • [8] Integrative single-cell analysis
    Tim Stuart
    Rahul Satija
    Nature Reviews Genetics, 2019, 20 : 257 - 272
  • [9] iPoLNG-An unsupervised model for the integrative analysis of single-cell multiomics data
    Zhang, Wenyu
    Lin, Zhixiang
    FRONTIERS IN GENETICS, 2023, 14
  • [10] EpiScanpy: integrated single-cell epigenomic analysis
    Anna Danese
    Maria L. Richter
    Kridsadakorn Chaichoompu
    David S. Fischer
    Fabian J. Theis
    Maria Colomé-Tatché
    Nature Communications, 12