Accelerated k-means clustering algorithm for colour image quantization

被引:35
|
作者
Hu, Y-C [1 ]
Su, B-H [1 ]
机构
[1] Providence Univ, Dept Comp Sci & Informat Management, Taichung 433, Taiwan
来源
IMAGING SCIENCE JOURNAL | 2008年 / 56卷 / 01期
关键词
colour image quantization; k-means clustering algorithm; vector quantization; LBG algorithm;
D O I
10.1179/174313107X176298
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The k-means clustering algorithm is a commonly used algorithm for palette design. If an adequate initial palette is selected, a good quality reconstructed image of a compressed colour image can be achieved. The major problem is that a great deal of computational cost is consumed. To accelerate the k-means clustering algorithm, two test conditions are employed in the proposed algorithm. From the experimental results, it is found that the proposed algorithm significantly cuts down the computational cost of the k-means clustering algorithm without incurring any extra distortion.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [41] Application of Improved Genetic K-Means Clustering Algorithm in Image Segmentation
    Tan, Zhicun
    Lu, Ruihua
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL II, 2009, : 625 - 628
  • [42] Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation
    Isa, Nor Ashidi Mat
    Salamah, Samy A.
    Ngah, Umi Kalthum
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (04) : 2145 - 2153
  • [43] Adaptive k-means clustering algorithm for MR breast image segmentation
    Hossam M. Moftah
    Ahmad Taher Azar
    Eiman Tamah Al-Shammari
    Neveen I. Ghali
    Aboul Ella Hassanien
    Mahmoud Shoman
    [J]. Neural Computing and Applications, 2014, 24 : 1917 - 1928
  • [44] Multispectral image clustering using enhanced genetic k-Means algorithm
    Venkatalakshmi, K.
    Anisha Praisy, P.
    Maragathavalli, R.
    MercyShalinie, S.
    [J]. Information Technology Journal, 2007, 6 (04) : 554 - 560
  • [45] Application Research of k-means Clustering Algorithm in Image Retrieval System
    Liu, Hong
    Yu, Xiaohong
    [J]. PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY (ISCSCT 2009), 2009, : 274 - 277
  • [46] K*-Means: An Effective and Efficient K-means Clustering Algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 242 - 249
  • [47] Refined SAR Image Segmentation Algorithm Based on K-means Clustering
    Xing, Tao
    Hu, Qingrong
    Li, Jun
    Wang, Guanyong
    [J]. 2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [48] A volume segmentation algorithm for medical image based on K-means clustering
    Li Xinwu
    [J]. 2008 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2008, : 881 - 884
  • [49] Adaptive k-means clustering algorithm for MR breast image segmentation
    Moftah, Hossam M.
    Azar, Ahmad Taher
    Al-Shammari, Eiman Tamah
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Shoman, Mahmoud
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8): : 1917 - 1928
  • [50] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893