A Land-cover Classification Method of High-resolution Remote Sensing Imagery Based on Convolution Neural Network

被引:2
|
作者
Wang, Yuhan [1 ]
Gu, Lingjia [1 ]
Ren, Ruizhi [1 ]
Zheng, Xu [1 ]
Fan, Xintong [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Jilin, Peoples R China
来源
EARTH OBSERVING SYSTEMS XXIII | 2018年 / 10764卷
基金
中国国家自然科学基金;
关键词
High-resolution remote sensing image; GF-2; Deep learning; CNN; CaffeNet;
D O I
10.1117/12.2318930
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the development of space satellites, a large number of high-resolution remote sensing images have been produced, so the analysis and application of high-resolution remote sensing images are very important. Recently deep learning provides a new method to increase the accuracy of land-cover classification. This study aims to propose a classification framework based on convolutional neural network (CNN) to carry out remote sensing scene classification. After remote sensing images are trained by CNN, a model which can extract complex characteristic from the image for classification is created. In this paper, GaoFen-2(GF-2) satellite data is used as data sources and Jilin province of China is selected as the study area. Firstly, the preprocessed images are made into a GF-2 satellite data sets. Secondly, CaffeNet is used to train the data sets through Caffe platform and the classification result is obtained. The CNN overall accuracy is 89.88%, the Kappa coefficient is 0.8026. Compared with the traditional BP neural network classification result, it is obviously find the CNN is more suitable for remote sensing image classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Land-use classification based on high-resolution remote sensing imagery and deep learning models
    Hao, Mengmeng
    Dong, Xiaohan
    Jiang, Dong
    Yu, Xianwen
    Ding, Fangyu
    Zhuo, Jun
    PLOS ONE, 2024, 19 (04):
  • [22] Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery
    Zhang, Lei
    Jia, Kun
    Li, Xiaosong
    Yuan, Quanzhi
    Zhao, Xinfeng
    REMOTE SENSING LETTERS, 2014, 5 (01) : 73 - 82
  • [23] AN IMPROVED OBJECT CNN METHOD FOR CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY
    Li, Zhiqing
    Li, Erzhu
    Su, Zhigang
    Xu, Tianyu
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3167 - 3170
  • [24] Study of land cover classification based on knowledge rules using high-resolution remote sensing images
    Zhang Rongqun
    Zhu Daolin
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3647 - 3652
  • [25] Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery
    Zhu, Qiqi
    Guo, Xi
    Deng, Weihuan
    Shi, Sunan
    Guan, Qingfeng
    Zhong, Yanfei
    Zhang, Liangpei
    Li, Deren
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 184 : 63 - 78
  • [26] Information Extraction of the Vehicle from High-Resolution Remote Sensing Image Based on Convolution Neural Network
    Wang, Yanmei
    Peng, Fei
    Lu, Mingyu
    Ikbal, Mohammad Asif
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2023, 16 (02) : 168 - 177
  • [27] LAND-COVER CLASSIFICATION OF MULTISPECTRAL IMAGERY USING A DYNAMIC LEARNING NEURAL-NETWORK
    CHEN, KS
    TZENG, YC
    CHEN, CF
    KAO, WL
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1995, 61 (04): : 403 - 408
  • [28] LAND-COVER DENSITY-BASED APPROACH TO URBAN LAND USE MAPPING USING HIGH-RESOLUTION IMAGERY
    ZHANG Xiu-ying1
    2. Key Open Laboratory of RemoteSensing and Digital Agriculture
    3. Institute of Agriculture Resources and Regional Planning
    Chinese Geographical Science, 2005, (02) : 162 - 167
  • [29] Land-cover density-based approach to urban land use mapping using high-resolution imagery
    Xiu-ying Zhang
    Xue-zhi Feng
    Hui Deng
    Chinese Geographical Science, 2005, 15 : 162 - 167
  • [30] LAND-COVER DENSITY-BASED APPROACH TO URBAN LAND USE MAPPING USING HIGH-RESOLUTION IMAGERY
    Zhang Xiu-ying
    Feng Xue-zhi
    Deng Hui
    CHINESE GEOGRAPHICAL SCIENCE, 2005, 15 (02) : 162 - 167