Dielectric properties of isolated adrenal chromaffin cells determined by microfluidic impedance spectroscopy

被引:12
|
作者
Sabuncu, A. C. [1 ]
Stacey, M. [2 ]
Craviso, G. L. [3 ]
Semenova, N. [2 ]
Vernier, P. T. [2 ]
Leblanc, N. [3 ]
Chatterjee, I. [4 ]
Zaklit, J. [4 ]
机构
[1] Southern Methodist Univ, Dept Mech Engn, Dallas, TX 75205 USA
[2] Old Dominion Univ, Frank Reidy Res Ctr Bioelect, Norfolk, VA 23508 USA
[3] Univ Nevada, Reno Sch Med, Dept Pharmacol, Reno, NV 89557 USA
[4] Univ Nevada, Coll Engn, Dept Elect & Biomed Engn, Reno, NV 89557 USA
基金
美国国家卫生研究院;
关键词
Dielectric spectroscopy; Impedance measurement; Chromaffin cells; Dielectric cell modeling; Permittivity; Conductivity; Membrane capacitance; PATCH-CLAMP; MEMBRANE PERMEABILIZATION; INTRACELLULAR CA2+; RAT-LIVER; ELECTROPORATION; RECEPTOR; OOCYTE; BLOOD;
D O I
10.1016/j.bioelechem.2017.09.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1 kHz and 20 MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner mixture model and the Clausius-Mossotti factor was obtained. Lastly, to extract the cellular dielectric parameters, the cell dielectric data were fit into a granular cell model representative of a chromaffin cell, which was based on the inclusion of secretory granules in the cytoplasm. Chromaffin cell parameters determined from this study were the cell and secretory granule membrane specific capacitance (1.22 and 7.10 mu F/cm(2), respectively), the cytoplasmic conductivity, which excludes and includes the effect of intracellular membranous structures (1.14 and 0.49 S/m, respectively), and the secretory granule milieu conductivity (0.35 S/m). These measurements will be crucial for incorporating into numerical models aimed at understanding the differential poration effect of nanosecond electric pulses on chromaffin cell membranes. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条